CHAPTER 6

False Positives and Positive
Fallacies

N THE 1970S a psychology professor at Harvard had an odd-

looking middle-aged student in his class. After the maﬂ. few class

meetings the student approached the Ecmmmmo_.. to explain why he
had enrolled in the class.! In my experience teaching, though I have
had some polite students come up to me to explain why they were .
dropping my course, I have never had a student feel the :mmm.wm
explain why he was taking it. That's probably why I can get away S_M
happily assuming that if asked, such a student would respon ,
“Because | am fascinated by the subject, and you are a fine lecturer,
But this student had other reasons. He said he needed help because
strange things were happening to him: his wife spoke the io&m.rm
was thinking before he could say them, and now she was divoreing
him; a co-worker casually mentioned layoffs over drinks, and two
days later the student lost his job. Over time, he Hm._uc;ma, he rwn_
experienced dozens of misfortunes and what he considered to be dis-
turbing coincidences.

At first the happenings confused him. Then, as :._o.m» of us would,
he formed a mental model to reconcile the events with the way he
believed the world behaves. The theory he came up with, .ros.ma_mr
was unlike anything most of us would devise: he was the mc_u_mnﬁ. of an
elaborate secret scientific experiment. He believed the experiment
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was staged by a large group of conspirators led by the famous psychol-
ogist B. F. Skinner. He also believed that when it was over, he would
become famous and perhaps be elected to a high public office. That,
he said, was why he was taking the course. He wanted to learn how to
test his hypothesis in light of the many instances of evidence he had
accumulated.

A few months after the course had run its course, the student
again called on the professor. The experiment was still in progress, he
reported, and now he was suing his former employer, who had pro-
duced a psychiatrist willing to testify that he suffered from paranoia.

One of the paranoid delusions the former employer’s psychia-
trist pointed to was the student’s alleged invention of a fictitious
eighteenth-century minister. In particular, the psychiatrist scoffed at
the student’s claim that this minister was an amateur mathematician
who had created in his spare moments a bizarre theory of probability.
The minister’s name, according to the student, was Thomas Bayes.
His theory, the student asserted, described how to assess the chances
that some event would occur if some other event also occurred. What
are the chances that a particular student would be the subject of a
vast secret conspiracy of experimental psychologists? Admittedly not
huge. But what if one’s wife speaks one’s thoughts before one can
utter them and co-workers foretell your professional fate over drinks
in casual conversation? The student claimed that Bayes’s theory
showed how you should alter your initial estimation in light of that
new evidence. And he presented the court with a mumbo jumbo of
formulas and calculations regarding his hypothesis, concluding that
the additional evidence meant that the probability was 999,999 in
1 million: that he was right about the conspiracy. The enemy psychi-

- atrist claimed that this mathematician-minister and his theory were

figments of the student’s schizophrenic imagination. .

The student asked the professor to help him refute that claim,
The professor agreed. He had good reason, for Thomas Bayes, boin
in London in 1701, really was a minister, with a parish at Tunbridge
Wells. He died in 1761 and was buried in a park in London called
Bunhill Fields, in the same grave as his father, Joshua, also a minis-
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ter. And he indeed did invent a theory of “conditional vaovm.v_ra\a to
show how the theory of probability can be extended from indepen-
dent events to events whose outcomes are oos.smnﬁm. m,oa. mxm:..ﬁ”w“
the probability that a randomly chosen person is Em:ﬁm.:u\ ill and the
probability that a randomly chosen person vmrﬂ.wmom his spouse can
read his mind are both very low, but the ?o_um_u_:u\ zj" a person __w
mentally ill if he believes his spouse can .:wma r._m mind _,m, muc M
higher, as is the probability that a person believes _..:m spouse oEH RM !
his mind if he is mentally ill. How are all these Eﬂ.v_.um_u:.:nm related?
That question is the subject of conditional ?o.vw_u_ra\. o
The professor supplied a deposition nxﬁ_m::.:m Bayes’s m.x_mwmzn_m
and his theory, though not supporting the specific .Ea &.:?o:m cal-
culations that his former student claimed ?oi&. his mm:_u\. 1_..._.5 mmw
part of this story is not just the middle-aged mnr_wo_ur.ﬂm:_o himself,
but the medical and legal team on the other side. It is :H.ﬂmoncsﬁm
that some people suffer from schizophrenia, but even though QMHmM
can rm.:u to mediate the illness, they cannot battle ignorance. M_
ignorance of the ideas of Thomas Bayes, as Ew mrm:.mmﬂ Rmamw u_ﬁ t :M
heart of many serious mistakes in both medical m.mmso.m_m and ega
judgment. It is an ignorance that is rarely addressed during a doctor’s
’s professional training.
" mfwwu M_MM %.mrm Bayesian judgments in our daily :,wmm. >.mr.: tells
the story of an attorney who has a great job, a charming ,wﬁmm, and _m
wonderful family. He Joves his wife and daughter, but still he feels
that something is missing in his life. One night as he RJ:E roEm.ow
the train he spots a beautiful woman gazing with a pensive expression
out the window of a dance studio. He looks m: ro.n again the next
night, and the night after that. Each night as his train passcs T.Q m:.w.
dio, he falls further under her spell. Finally one evening he impul-
sively rushes off the train and signs up for dance F.wmo:mv. hoping to
meet the wornan. He finds that her haunting attraction withers Oa_:.“n
his gaze from afar gives way to face-to-face encounters. He does fall in
love, howéver, not with her but with dancing. )
He keeps his new obsession from his m:::v.. and oo:mmm:mmwsm -
ing excuses for spending more and more evenings away from home.
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His wife eventually discovers that he is not working late as often as he
says he is. She figures the chances of his lying about his after-work
activities are far greater if he is having an affair than if he isn’t, and so
she concludes that he is. But the wife was mistaken not just in her
conclusion but in her reasoning: she confused the probability that
her husband would sneak around if he were having an affair with the
probability that he was having an affair if he was sneaking around.
It'sa common mistake. Say your boss has been taking longer than
usual to respond to your e-mails. Many people would take that as a
sign that their star is falling because if your star is falling, the chances
are high that your boss will respond to your e-mails more slowly than
before. But your boss might be slower in responding because she is
untusually busy or her mother is ill. And so the chances that your star
is falling if she is taking longer to respond are much lower than the
chances that your boss will respond more slowly if your star is falling,
The appeal of many conspiracy theories depends on the misunder-
standing of this logic. That is, it depends on confusing the probability
that a series of events would happen if it were the product of a huge
conspiracy with the probability that a huge conspiracy exists if a
series of events occurs.

The effect on the probability that an event will occur if or given
that other events occur is what Bayes’s theory is all about. To see in
detail how it works, we'll turn to another problem, one that is related
to the two-daughter problem we encountered in chapter 3. Let us
now suppose that a distant cousin has two children. Recall that in the
two-daughter problem you know that one or both are girls, and you
are trying to remember which it is—one or both? In a family with two
children, what are the chances, if one of the children is 2 girl, that
both children are girls? We didn’t discuss the question in those terms
in chapter 3, but the if makes this a problem in conditional probabil-
ity. If that if clause were not present, the chances that both children
were girls would be ! in 4, the 4 possible birth orders being {boy,
boy), (boy, girl), (gitl, boy), and (girl, girl). But given the additional
information that the family has a gitl, the chances are 1 in 3. That is
because if one of the children is a girl, there are just 3 possible sce-

107




THE DRUNKARD'S WALK

narios for this family—(boy, girl), (girl, boy), and (gitl, m..::\w:&
exactly 1 of the 3 corresponds to the outcome that _uozw o.r_E:ws are
girls. That's probably the simplest way to look at Bayes’s ideas— they
are just a matter of accounting. First write down 50.5510 space —
that is, the list of all the possibilities—along with ?m.:. _uavmvwr,:am if
they are not all equal (that is actually a good idea in wwm.:ﬁ_:m m_:«
confusing probability issue}. Next, cross oft ?.m vomm_?::nm. that the
condition (in this case, “at least one girl”) &.:5:58& .,.w.,\rm" is left are
the remaining possibilities and their relative probabilities. .

That might all seem obvious. Feeling cocky, you may think you
could have figured it out without the help of aomm Reverend m@nm
and vow to grab a different book to read the next time you step into
the bathtub. So before we proceed, let's try a slight <mdm=ﬁ. on the
two-daughter problem, one whose resolution may be a bit more

ing.?

mro\.%”wménmsﬁ is this: in a family with two children, what are Em
chances, if one of the children s a girl named Florida, that both n.r__-
dren are girls? Yes, I said a girl named Florida. .%rm name might
sound random, but it is not, for in addition to being the name of a
state known for Cuban immigrants, oranges, and old people who
traded their Jarge homes up north for the joys of palm trees and orga-
nized bingo, it is a real name. In fact, it was in the top 1,000 female
American names for the first thirty or so years of the last on:EQ. I
picked it rather carefully, because part of the riddle is the question,
what, if anything, about the name Florida affects the odds? _w:: | am
getting ahead of myself. Before we move on, please consider this
question: in the girl-named-Florida problem, are the chances of two
girls still 1in 3 (as they are in the two-daughter problem)?

I will shortly show that the answer is no. The fact that n”zo of .nr.m
girls is named Florida changes the chances to 1 in 2: Don’t worry if
that is difficult to imagine. The key to understanding randomness
and alt of mathematics is not being able to intuit the answer to every
problem immediately but merely having the tools to figure out the

answer.
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THOSE WHO DOUBTED Bayes’s existence were right about one
thing: he never published a single scientific paper. We know little of
his life, but he probably pursued his work for his own pleasure and did
not feel much need to communicate it. In that and other respects he
and Jakob Bernoulli were opposites. For Bernoulli resisted the study
of theology, whereas Bayes embraced it. And Bernoulli sought fame,
whereas Bayes showed no interest in it. Finally, Bemoulli’s theorem
concerns how many heads to expect if, say, you plan to conduct many
tosses of a balanced coin, whereas Bayes investigated Bernoulli’s orig-
inal goal, the issue of how certain you can be that a coin is balanced
if you observe a certain number of heads.

The theory for which Bayes is known today came to light on
December 23, 1763, when another chaplain and mathematician,
Richard Price, read a paper to the Royal Society, Britain’s national.
academy of science. The paper, by Bayes, was titled “An Essay toward
Solving a Problem in the Doctrine of Chances” and was published in
the Royal Society’s Philosophical Transactions in 1764. Bayes had left
Price the article in his will, along with £100. Referring to Price as “I
suppose a preacher at Newington Green,” Bayes died four months
after writing his will.?

Despite Bayes’s casual reference, Richard Price was not just
another obscure preacher. He was a well-known advocate of freedom
of religion, a friend of Benjamin Franklin’s, 2 man entrusted by
Adam Smith to critique parts of a draft of The Wealth of Nations, and
a well-known mathematician. He is also credited with founding actu-
ary science, a held he developed when, in 1765, three men from an
insurance company, the Equitable Society, requested his assistance.
Six years after that encounter he published his work in a book titled
Observations on Reversionary Payments. Though the book served as a
bible for actuaries well into the nineteenth century, because of some

poor data and estimation methods, he appears to have underesti-
mated life expectancies. The resulting inflated life insurance premi-
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ums enriched his pals at the Equitable Society. The hapless British
government, on the other hand, based annuity payments on Price’s
tables and took a bath when the pensioners did not proceed to keel
over at the predicted rate.

As I mentioned, Bayes developed conditional probability in an
attempt to answer the same question that inspired Bernoulli: how can
we infer underlying probability from observation? Ifa drug just cured
45 out of 60 patients in a clinical trial, what does that tell you about
the chances the drug will work on the next patient? If it worked for
600,000 out of 1 million patients, the odds are obviously good that its
chances of working are close to 60 percent. But what can you con-
clude from a smaller trial? Bayes also asked another question: if,
before the trial, you had reason to believe that the drug was only 50
percent effective, how much weight should the new data carry in
your future assessments? Most of our life experiences are like that: we
observe a relatively small sample of outcomes, from which we infer
information and make judgments about the qualities that produced
those outcomes. How should we make those inferences?

Bayes approached the problem via a metaphor.* Imagine we are
supplied with a square table and two balls. We roll the first ball onto
the table in a manner that makes it equally probable that the ball will
come to rest at any point. Our job is to determine, without looking,
where along the left-right axis the ball stopped. Our tool in this is the
second ball, which we may repeatedly roll onto the table in the same
manner as the first. With each 1oll a collaborator notes whether that
ball comes to rest to the right or the left of the place where the first
ball fanded. At the end he informs us of the total number of times the
second ball landed in each of the two general locations. The first ball
represents the unknown that we wish to gain information about, and
the second ball represents the evidence we manage to obtain. If the
second ball lands consistently to the right of the first, we can be pretty
confident that the first ball rests toward the far left side of the table. If

it 1ands less consistently to the right, we might be less confident of
that conclusion, or we might guess that the first ball is situated farther
to the right. Bayes showed how to determine, based on the data of the
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mam.o:m ball, the precise probability that the first ball is at any given
point on the left-right axis. And he showed how, given additional
data, one should revise one’s initial estimate. In Bayesian terminol-
ogy the initial estimates are called prior probabilities and the new
guesses, posterior probabilities.

. Bayes concocted this game because it models many of the deci-
sions we make in life. In the drug-trial example the position of the
first ball represents the drug’s true effectiveness, and the reports
regarding the second ball represent the patient data. The position of
Pm first ball could also represent a film’s appeal, product quality, driv-
ing skill, hard work, stubbornness, talent, ability, or whatever it mm that
determines the success or failure of a certain endeavor. The reports
on the second ball would then represent our observations or the data
we collect. Bayes's theory shows how to make assessments and then
adjust them in the face of new data.

ﬁwmmw Bayesian analysis is widely employed throughout science
m:m industry. For instance, models employed to determine car
insurance rates include a mathematical function describing, per unit
of driving time, your personal probability of having Nmno. one, or
more accidents. Consider, for our purposes, a simplified SVQ%_ m_._m:
Em.uoom everyone in one of two categories: high risk, which includes
m:f.\ma who average at least one accident each year, and low risk
E_.z.nr includes drivers who average less than one. If, when you appl .
for insurance, you have a driving record that stretches back gm:%
years without an accident or one that goes back twenty years with
9_3\&95: accidents, the insurance company can be pretty sure
which category to place you in. But if you are a new driver, should
you be classified as low risk (a kid who obeys the speed limit w:._ﬁ_ vol-
unteers to be the designated driver) or high risk (a kid who races
down Main Street swigging from a half-empty $2 bottle of Baone’s
Farm apple wine)? Since the company has no data on you—no idea
of the “position of the first ball” —it might assign you an equal prior
probability of being in either group, or it might use what it knows
about the general population of new drivers and start you off b
guessing that the chances you are a high risk are, say, 1 in 3. In ?mﬂ .
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case the company would model you as a hybrid — one-third high risk
and two-thirds low risk—and charge you one-third the price it
charges high-risk drivers plus two-thirds the price it charges low-risk
drivers. Then, after a year of observation —that is, after one of Bayes’s
second balls has been thrown—the company can employ the new
datum to reevaluate its model, adjust the one-third and two-third pro-
portions it previously assigned, and recalculate what it ought to
charge. If you have had no accidents, the proportion of low risk and
Jow price it assigns you will increase; if you have had two accidents, it
will decrease. The precise size of the adjustment is given by Bayes’s
theory. In the same manner the insurance company can periodically
adjust its assessments in later years to reflect the fact that you were
accident-free or that you twice had an accident while driving' the
wrong way down a one-way street, holding a cell phone with your left
hand and a doughnut with your right. That is why insurance compa-
nies can give out “good driver” discounts: the absence of accidents
elevates the posterior probability that a driver belongs in a low-risk
group.

Obviously many of the details of Bayes’s theory are rather corn-
plex. But as | mentioned when I analyzed the two-daughter problem,
the key to his approach is to use new information to prune the sample
space and adjust probabilities accordingly. In the two-daughter prob-
lem the sample space was initially (boy, boy), (boy, girl), (girl, boy),
and {gitl, girl) but reduces to (boy, girl), (girl, boy), and (gitl, gitl) if
you learn that one of the children is a girl, making the chances of a
two-girl family 1 in 3. Let’s apply that same simple strategy to see
what happens if you learn that one of the children is a gisl named
Florida.

In the girl-named-Florida problem our information concetns not
just the gender of the children, but also, for the girls, the name. Since
our original sample space should be a list of all the possibilities, in
this case it is a list of both gender and name. Denoting “girl-named-
Florida” by girl-F and “girl-not-named-Florida” by gitl-NF, we write
the sample space this way: (boy, boy), (boy, girk-F), (boy, gitl-NF),
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(gith-F, boy), (girl-NF, boy), (girh-NF, girl-F), (girl-F, gitl-NF), (girl-
NF, girl-NF), and (girl-F, girl-F).

Now, the pruning. Since we know that one of the children is a girl
named Florida, we can reduce the sample space to (boy, girl-F),
{gitl-F, boy), (girl-NF, girl-F), (girl-F, girl-NF), and (girl-F, girl-F).
That brings us to another way in which this problem differs from the
two-daughter problem. Here, because it is not equally probable that a
girl’s name is or is not Florida, not all the elements of the sample
space are equally probable.

In 1935, the last year for which the Social Security Administration
provided statistics on the name, about 1 in 30,000 girls were chris-
tened Florida.’ Since the name has been dying out, for the sake of
argument let’s say that today the probability of a girl’s being named
Florida is 1 in 1 million. That means that if we learn that a particular
girl’s name is not Florida, it’s no big deal, but if we learn that a partic-
ular girt’s name is Florida, in a sense we've hit the jackpot. The
chances of both girls’ being named Florida (even if we ignore the fact
that parents tend to shy away from giving their children identical
names) are therefore so small we are justified in ignoring that possi-
bility. That leaves us with just (boy, girl-F), (girl-F, boy), (girl-NF,

girl-F), and (girl-F, girl-NF), which are, to a very good approxima-
tion, equally likely. -

Since 2 of the 4, or half, of the elements in the sample space are
families with two girls, the answer is not 1 in 3 —as it was in the two-
daughter problem—but 1 in 2. The added information —your knowl-
edge of the girl's name —makes a difference.

One way to understand this, if it still seems puzzling, is to imag-
ine that we gather into a very large room 75 million families that have
two children, at least one of whom is a girl. As the two-daughter prob-
lem taught us, there will be about 25 million two-girl families in that
room and 50 million one-girl families (25 million in which the girl is
the older child and an equal number in which she is the younger).
Next comes the pruning: we ask that only the families that include a
gitl named Florida remain. Since Florida is a | in 1 million name,
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about 50 of the 50 million one-gitl families will remain. And of the
25 million two-girl families, 50 of them will also get to stay, 25
because their firstborn is named Florida and another 25 because
their younger girl has that name. It's as if the girls are Jottery tickets
and the girls named Florida are the winning tickets. Although there
are twice as many one-girl families as two-girl families, the two-girl
families each have two tickets, so the one-girl families and the two-
girl families will be about equally represented among the winners.

[ have described the girt-named-Florida problem in potentially
annoying detail, the kind of detail that sometimes lands me on the
do-not-invite list for my neighbors™ parties. I did this not because 1
expect you to run into this situation. I did it because the context is
simple, and the same kind of reasoning will bring clarity to many sit-
uations that really are encountered in life. Now let’s talk about a few
of those. .

My MOST MEMORABLE ENCOUNTER with the Reverend Bayes
came one Friday afternoon in 1989, when my doctor told me by tele-
phone that the chances were 999 out of 1,000 that I'd be dead within
a decade. He added, “I'm really sorry,” as if he had some patients to
whom he would say he is sorry but not mean it. Then he answered a
few questions about the course of the disease and hung up, presum-
ably to offer another patient his or her Friday-afternoon news flash. It
is hard to describe or even remember exactly how the weekend went
for me, but let’s just say I did not go to Disneyland. Given my death
sentence, why am 1 still here, able to write about it?

The adventure started when my wife and [ applied for life insur-
ance. The application procedure involved a blood test. A week or two
later we were turned down. The ever economical insurance com-
pany sent the news in two brief letters that were identical, except for
a single additional word in the letter to my wife. My letter stated that
the company was denying me insurance because of the “results of
your blood test.” My wife’s letter stated that the company was turniing
her down because of the “results of your husband’s blood test.” When
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the added word husband’s proved to be the extent of the clues the
kindhearted insurance company was willing to provide about our
uninsurability, [ went to my doctor on a hunch and took an HIV test.
It came back positive. Though I was too shocked initially to quiz him
about the odds he quoted, I later learned that he had derived my
1-in-1,000 chance of being healthy from the following statistic: the
HIV test produced a positive result when the blood was not infected
with the AIDS virus in only 1 in 1,000 blood samples. That might
sound like the same message he passed on, but it wasn’t. My doctor
had confused the chances that [ would test positive if | was not HIV-
positive with the chances that I would not be HIV-positive if | tested
positive.

To understand my doctor’s error, let’s employ Bayes’s method.
The first step is to define the sample space. We could include every-
one who has ever taken an HIV test, but we’ll get a more accurate
result if we employ a bit of additional relevant information about me
and consider only heterosexual non-IV-drug-abusing white male
Americans who have taken the test. (We'll see later what kind of dif
ference this makes.)

Now that we know whom to include in the sample space, let’s
classify the members of the space. Instead of boy and girl, here the
relevant classes are those who tested positive and are HIV-positive
(true positives), those who tested positive but are not positive (false
positives), those who tested negative and are HIV-negative (true neg-
atives), and those who tested negative but are HIV-positive (false
negatives). ,

Finally, we ask, how many people are there in each of these
classes? Suppose we consider an initial population of 10,000. We can
estimate, employing statistics from the Centers for Disease Control
and Prevention, that in 1989 about 1 in those 10,000 heterosexual
non-IV-drug-abusing white male Americans who got tested were
infected with HIV.6 Assuming that the false-negative rate is near 0,
that means that about 1 person out of every 10,000 will test positive
due to the presence of the infection. In addition, since the rate of
false positives is, as my doctor had quoted, 1 in 1,000, there will be
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about 10 others who are not infected with HIV but will test positive
anyway. The other 9,989 of the 10,000 men in the sample space will
test negative.

Now let’s prune the sample space to include only those who
tested positive. We end up with 10 people who are false positives and
1 true positive. In other words, only 1 in 11 people who test positive
are really infected with HIV. My doctor told me that the probability
that the test was wrong—and [ was in fact healthy—was 1 in 1,000.
He should have said, “Don’t worry, the chances are better than 10
out of 11 that you are not infected.” In my case the screening test was
apparently fooled by certain markers that were present in my blood
even though the virus this test was screening for was not present.

It ts important to know the false positive rate when assessing any
diagnostic test. For example, a test that identiftes 99 percent of all
malignant tumors sounds very impressive, but I can easily devise a
test that identifies 100 percent of all tumors. All T have to do is report
that everyone I examine has a tumor. The key statistic that differenti-
ates my test from a useful one is that my test would produce a high
rate of false positives. But the above incident illustrates that knowl-
edge of the false positive rate is not sufficient to determine the useful-
ness of a test—you must also know how the false-positive rate
compares with the true prevalence of the disease. If the disease is
rare, even a low false-positive rate does not mean that a positive test
implies you have the disease. If a disease is common, a positive result
is much more likely to be meaningful. To see how the true preva-
lence affects the implications of a positive test, let’s suppose now that
I had been homosexual and tested positive. Assume that in the male
gay community the chance of infection among those being tested in
1989 was about 1 percent. That means that in the results of 10,000
tests, we would find not 1 {as before), but 100 true positives to go with
the 10 false positives. So in this case the chances that a positive test
meant I was infected would have been 10 out of 1. That's why, when

assessing test results, it is good to know whether you are in a high-risk

group.
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BAYES'S THEORY shows that the probability that A will occur if B
occurs will generally differ from the probability that B will occur if A
occurs.” To not account for this is a common mistake in the medical
profession. For instance, in studies in Germany and the United
States, researchers asked physicians to estimate the probability that
an asymptomatic woman between the ages of 40 and 50 who has a
positive mammogram actually has breast cancer if 7 percent of mam-
mograms show cancer when there is none.8 In addition, the doctors
were told that the actual incidence was about 0.8 percent and that
the false-negative rate about 10 percent. Putting that all together, one
can use Bayes’s methods to determine that a positive mammogram is
due to cancer in only about 9 percent of the cases. In the German
group, however, one-third of the physicians concluded that the prob-
ability was about 90 percent, and the median estimate was 70 per-
cent. In the American group, 95 out of 100 physicians estimated the
probability to be around 75 percent.

Similar issues arise in drug testing in athletes. Here again, the oft-
quoted but not directly relevant number is the false positive rate. This
gives a distorted view of the probability that an athlete is guilty. For
example, Mary Decker Slaney, a world-class runner and 1983 world
champion in the 1,500 and 3,000 meter race, was trying to make a
comeback when, at the U.S. Olympic Trials in Atlanta in 1996, she
was accused of doping violations consistent with testosterone use.
After various deliberations, the IAAF (known officially since 2001 as
the International ‘Association of Athletics Federations) ruled that
Slaney “was guilty of a doping offense,” effectively ending her career.
According to some of the testimony in the Slaney case the false-
posttive rate for the test to which her urine was subjected could have
been as high as 1 percent. This probably made many people comfort-
able that her chance of guilt was 99 percent, but as we have seen that
is not true. Suppose, for example, 1,000 athletes were tested, 1 in 10
was guilty, and the test, when given to a guilty athlete, had a 50 per-
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cent chance of revealing the doping violation. Then for every thou-
sand athletes tested, 100 would have been guilty and the test would
have fingered 50 of those. Meanwhile, of the 900 athletes who are
innocent, the test would have fingered 9. So what a positive-doping
test really meant was not that the probability she was guilty was
99 percent, but rather %9 = 84.7 percent. Put another way, you
should have about as much confidence that Slaney was guilty based
on that evidence as you would that the number 1 won't turn up when
she tossed a die. That certainly leaves room for reasonable doubt,
and, more important, indicates that to perform mass testing (90,000
athletes have their urine tested annually) and make judgments based
on such a procedure means to condemn a large number of innocent
people.?

In legal circles the mistake of inversion is sometimes called the
prosecutor’s fallacy because prosecutors often employ that type of fal-
lacious argument to lead juries to convicting suspects on thin evi-
dence. Consider, for example, the case in Britain of Sally Clark.1?
Clark’s first child died at 11 weeks. The death was reported as due to
sudden infant death syndrome, or SIDS, a diagnosis that is made
when the death of a baby is unexpected and a postmortemn does not
reveal a cause of death, Clark conceived again, and this time her
baby died at 8 weeks, again reportedly of SIDS. When that hap-
pened, she was arrested and accused of smothering both children. At
the trial the prosecution called in an expert pediatrician, Sir Roy
Meadow, to testify that based on the rarity of SIDS, the odds of both
children’s dying from it was 73 million to 1. The prosecution offered
no other substantive evidence against her. Should that have been
enough to convict? The jury thought so, and in November 1999,
Mrs. Clark was sent to prison.

Sir Meadow had estimated that the odds that a child will die of
SIDS are 1 in 8,543. He calculated his estimate of 73 million to 1 by
multiplying two such factors, one for each child. But this calculation
assumes that the deaths are independent—that is, that no environ-
mental or genetic effects play a role that might increase a second
child’s risk once an older sibling has died of SIDS. In fact, in an edi-
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torial in the British Medical Journal a {few weeks after the trial, the
chances of two siblings’ dying of SIDS were estimated at 2.75 million
to 1.1 Those are still very long odds.

The key to understanding why Sally Clark was wrongly impris-
oned is again to consider the inversion error: it is not the probability
that two children will die of SIDS that we seek but the probability
that the two children who died, died of SIDS. Two years after Clark
was imprisoned, the Royal Statistical Society weighed in on this sub-
ject with a press release, declaring that the jury’s decision was based
on “a serious error of logic known as the Prosecutor’s Fallacy. The
jury needs to weigh up two competing explanations for the babies’
deaths: SIDS or murder. Two deaths by SIDS or two murders are
each quite unlikely, but one has apparently happened in this case.
What matters is the relative likelihood of the deaths . . ., not just how
unlikely . . . [the SIDS explanation is].”12 A mathematician later esti-
mated the relative likelihood of a family’s losing two babies by SIDS
or by murder. He concluded, based on the available data, that two
infants are 9 times more likely to be SIDS victims than murder
victims.!3

The Clarks appealed the case and, for the appeal, hired their own
statisticians as expert witnesses. They lost the appeal, but they contin-
ued to seek medical explanations for the deaths and in the process
uncovered the fact that the pathologist working for the prosecution
had withheld the fact that the second child had been suffering from a
bacterial infection at the time of death, an infection that might have
caused the infant’s death. Based on that discovery, a judge quashed
the conviction, and after nearly three and a half years, Sally Clark
was released from prison.

The renowned attorney and Harvard Law School professor Alan
Dershowitz also successfully employed the prosecutor’s fallacy—to
help defend Q. J. Simpson in his trial for the murder of Simpson’s ex-
wife, Nicole Brown Simpson, and a male companion. The trial of
Simpson, a former football star, was one-of the biggest media events
of 1994-95. The police had plenty of evidence against him. They
found a bloody glove at his estate that seemed to match one found at
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the murder scene. Bloodstains matching Nicole’s blood were found
on the gloves, in his white Ford Bronco, on a pair of socks in his bed-
roorn, and in his driveway and house. Moreover, DNA samples taken
from blood at the crime scene matched O. Js. The defense could do
little more than accuse the Los Angeles Police Department of
racism—O. |. is African American—and criticize the integrity of the
police and the authenticity of their evidence.

The prosecution made a decision to focus the opening of its case
.on Q. ]’s propensity toward violence against Nicole. Prosecutors
spent the first ten days of the trial entering evidence of his history of
abusing her and claimed that this alone was a good reason to suspect
him of her murder. As they put it, “a slap is a prelude to homicide.”*
The defense attorneys used this strategy as a launchpad for their
accusations of duplicity, arguing that the prosecution had spent two
weeks trying to mislead the jury and that the evidence that O. J. had
battered Nicole on previous occasions meant nothing. Here is Der-
showitz’s reasoning: 4 million women are battered annually by hus-
bands and boyfriends in the United States, yet in 1992, according to
the FBI Uniform Crime Reports, a total of 1,432, or 1 in 2,500, were
killed by their husbands or boyfriends.!s Therefore, the defense
retorted, few men who slap or beat their domestic partners go on to
murder them. True? Yes. Convincing? Yes. Relevant? No. The rele-
vant number is not the probability that 2 man who batters his wife
will go on to kill her (1 in 2,500) but rather the probability that a bat-
tered wife who was murdered was murdered by her abuser. Accord-
ing to the Uniform Crime Reports for the United States and Its
Possessions in 1993, the probability Dershowitz (or the prosecution)
should have reported was this one: of all the battered women mur-
dered in the United States in 1993, some 90 percent were killed by
their abuser. That statistic was not mentioned at the trial.

As the hour of the verdict’s announcement approached, long-
distance call volume dropped by half, trading volume on the New
York Stock Exchange fell by 40 percent, and an estimated 100 mil-
lion people turned to their televisions and radios to hear the verdict:
not guilty. Dershowitz may have felt justified in misleading the jury
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because, in his words, “the courtroom oath—‘to tell the truth, the
whole truth and nothing but the truth’—is applicable only to wit-
nesses. Defense attorneys, prosecutors, and judges don’t take this
oath . . . indeed, it is fair to say the American justice system is built
on a foundation of not telling the whole truth 16

THOUGH CONDITIONAL PROBABILITY represented a revolution
in ideas about randomness, Thomas Bayes was no revolutionary, and
his work languished unattended despite its publication in the presti-
gious Philosophical Transactions in 1764. And so it fell to another
man, the French scientist and mathematician Pierre-Simon de
Laplace, to bring Bayes’s ideas to scientists’ attention and fulfill the
goal of revealing to the world how the probabilities that underlie real-
world situations could be inferred from the outcomes we observe.
You may remember that Bernoulli’s golden theorem will tell you
before you conduct a series of coin tosses how certain you can be, if
the coin is fair, that you will observe some given outcome. You may
also remember that it will not tell you after you've made a given series
of tosses the chances that the coin was a fair one. Along the same
lines, if you know that the chances that an eighty-five-year-old will
survive to ninety are *%o, the golden theorem tells you the probability
that half the eighty-five-year-olds in a group of 1,000 will die in the
next five years, but if half the people in some group died in the five
years after their eighty-hfth birthday, it cannot tell you how likely it is
that the underlying chances of survival for the people in that group
were *%o. Or if Ford knows that 1 in 100 of its automobiles has a
defective transmission, the golden theorem can tell Ford the chances
that, in a batch of 1,000 autos, 10 or more of the transmissions will be
defective, but if Ford finds 10 defective transmissions in a sample of
1,000 autos, it does not tell the automaker the likelihood that the
average number of defective transmissions is 1 in 100. In these cases
it is the latter scenario that is more often useful in life: outside situa-
tions involving gambling, we are not normally provided with theoret-
ical knowledge of the odds but rather must estimate them after
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making a series of observations. Scientists, too, find themselves in this
position: they do not generally seek to know, given the value of a
physical quantity, the probability that a measurement will come out
one way or another but instead seek to discern the true value of a
physical quantity, given a set of measurements.

[ have stressed this distinction because it is an important one. It
defines the fundamental difference between probability and statis-
tics: the former concerns predictions based on fixed probabilities; the
latter concerns the inference of those probabilities based on observed
data.

It is the latter set of issues that was addressed by Laplace. He was
not aware of Bayes's theory and therefore had to reinvent it. As he
framed it, the issue was this: given a series of measurements, what is
the best guess you can make of the true value of the measured quan-
tity, and what are the chances that this guess will be “near” the true
value, however demanding you are in your definition of near?

Laplace’s analysis began with a paper in 1774 but spread over four
decades. A brilliant and sometimes generous man, he also occasion-
ally borrowed without acknowledgment from the works of others and
was a tireless self-promoter. Most important, though, Laplace was a
flexible reed that bent with the breeze, a characteristic that allowed
him to continue his groundbreaking work virtually undisturbed by
the turbulent events transpiring around him. Prior to the French
Revolution, Laplace obtained the lucrative post of examiner to the
royal artillery, in which he had the luck to examine a promising
sixteen-year-old candidate named Napoléon Bonaparte. When the
revolution came, in 1789, he fell briefty under suspicion but unlike
many others emerged unscathed, declaring his “inextinguishable
hatred to royalty” and eventually winning new honors from the
republic. Then, when his acquaintance Napoléon crowned himself
emperor in 1804, he immediately shed his republicanism and in
1806 was given the title count. After the Bourbons returned, Laplace
slammed Napoléon in the 1814 edition of his treatise Théorie analy-
tique des probabilités, writing that “the fall of empires which aspired
to universal dominicn could be predicted with very high probability
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by one versed in the caleulus of chance.”1” The previous, 1812, edi-
tion had been dedicated to “Napoleon the Great.”

Laplace’s political dexterity was fortunate for mathematics, for in
the end his analysis was richer and more complete than Bayes’s. With
the foundation provided by Laplace’s work, in the next chapter we
shall leave the realm of probability and enter that of statistics. Their
joining point is one of the most important curves in all of mathemat-
ics and science, the bell curve, otherwise known as the normal distri-
bution. That, and the new theory of measurement that came with it,
are the subjects of the following chapter.
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