CHAPTER TEN

SITUATION NORMAL

I recently bought an electronic kitchen scale. It has a glass platform and
an Easy to Read Blue Backlit Display. My purchase was not symp-
tomatic of a desire to bake elaborate desserts. Nor was 1 intending my
apartment to become a haunt for local drug gangs. I was just interested in
weighing stuff. As soon as the scale was out of its box ¥'went to-my local
baker, Greggs, and bought a baguette. It weighed 391 grams. The follow-
ing day I returned to Greggs and bought another baguette. This one was
slightly heftier at 398 grams. Greggs is a chain with more than a thousand
shops in the UK. It specializes in cups of tea, sausage rolls and buns plas-
tered in icing sugar, but I had eyes only for the baguettes. On the third
day the baguette weighed 399 grams. By now I was bored with eating a
whole baguétte every day, but I continued with my daily weighing rou-
tine. The fourth baguette was a whopping 403 grams. 1 thought maybe I
should hang if on the wall, like a prize fish. Surely, I thought, the weights
would not rise forever, and I was correct. The fifth loaf came in at only
384 grams.

In the sixteenth and seventeenth centuries, Western Europe fell in love
with collecting data. Measuring tools like the thermometer, the barometer
and the perambulator—a wheel for clocking distances along a road—were
all invented during this period, and using them was an exciting novelty.
The fact that Arabic numerals, which provided effective notation for the
results, were finally in common use among the educated classes helped.
Collecting numbers became a popular pastime, and it was no passing fad;
the craze marked the beginning of modern science. The ability to describe
the world in quantitative, rather than qualitative, ferms totally changed
our relationship with our own surroundings. Numbers gave us a language
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for scientific investigation and with that came a new confidence that we
could have a deeper understanding of how things really are.

There is still something fun about measuring; indeed I found my daily
ritual of buying and weighing bread surprisingly pleasurable. I would
return from Greggs with a skip in my step, eager to see how many grams
my baguette would be, The frisson of expectation was just like the feeling
when you check soccer scores or financial markets.

The motivation behind my daily trip to the bakers was to chart a table
of how the weights were distributed, and after ten baguettes, I could see
that the lowest weight was 380 grams, the highest was 410 grams, and
one of the weights, 403 grams, was repeated. The spread was quite wide,
I thought. The baguettes were all from the same shop, all cost the same
amount, and yet the heaviest one was almost 8 percent heavier than the
lightest one.

Intrigued, I carried on with my experiment. Uneaten bread piled up in
my kitchen. It was fascinating to watch how the weights spread themselves
along my table, Though I could not predict how much any one baguette
would weigh, when all were taken collectively it was clear that a pattern
was definitely emerging. After 100 baguettes, I stopped the experiment.
By the end every number between 379 grams and 422 grams had been
covered at least once with only four exceptions.

Even though I had embarked on the bread project for mathematical
reasons, 1 noticed interesting psychological side effects. Just before weigh-
ing each loaf, I would look at it and ponder the color, length, girth and
texture—which varied quite considerably. I began to consider myself a

. connoisseur of baguettes and would say to myself, “Now, this is a heavy

one.” or “Definitely an average loaf today” I was wrong as often as I was
right. Yet my poor forecasting recard did not diminish my.belief that I was
indeed an expert in assessing baguettes. It was, I reasoned, the same self-
delusion displayed by sports and financial pundits who are equally unable
to predict random events, and yet build careers out of it.

Perhaps the most disconcerting emotional reaction I was having
to Greggs's baguettes was what happened when the weights were either
extremely heavy or extremely light. On the rare occasions when T weighed
a record high or a record low, I was thrilled. The weight was extra-special,
and it made the day seem extra-special, as if the exceptionalness of the
baguette would somehow be transferred to other aspects of my life. Ratio-
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nally, [ knew that it was inevitable that some baguettes would be oversize
and some undersize, but still, the occurrence of an extreme weight gave
me a high. T don't consider myself superstitious, so I was surprised that I
was unable to avoid seeing meaning in random patterns. It was a powerful
reminder of how susceptible we all are to unfounded beliefs.

Despite the promise of certainty that numbers provided the scientists of
the Enlightenment, they were often not totally certain. After all, some-
times when the same thing was measured twice, it gave two different
results. These results were an awkward inconvenience for scientists aiming
to find clear and direct explanations for natural phenomena. Galileo Gali-
lei, for instance, noticed that when he was calculating distances of stars
with his telescope, his results were prone to variation, and the variation
was not due to a mistake in his calculations. Rather, it was because mea-
suring was intrinsically fuzzy. Numbers, it seemed, were not as precise as
theyd hoped.

. This was exactly what I was experiencing with my baguettes. There
were probably many factors that contributed to the daily variance in
weight--the amount and consistency of the flour used, the length of time
in the oven, the journey of the baguettes from Greggs's central bakery to
my local store, the humidity of the air and so on. Likewise, there were
many variables affecting the results from Galileo’s telescope—such as
atmospheric conditions, the temperature of the equipment and personal
details, like how tired Galileo was when he recorded the readings.

Still, Galileo was able to see that the variation in his results obeyed
certain rules. Despite variation, data for each measurement tended to clus-
ter around a central value, and small errors relative to this central value
were mote common than large errors. He also noticed that the spread
was symmetrical—a measurement was as likely to be less than the central
value as it was to be more than the central value.

Likewise, my baguette data showed weights that were clustered around
a value of about 400 grams, give or take 20 grams on either side. Even
though none of my hundred baguettes weighed precisely 400 grams, there
were a lot more baguettes weighing around 400 grams than there were
ones weighing around 380 grams or 420 grams. The spread seemed pretty
symmetrical, as well,
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The first person to recognize the pattern produced by this kind of mea-
surernent error was the German mathematician Carl Friedrich Gauss. The
pattern is described by the following curve, called the bell curve:

Probabiliry of outcome

1 i L g
X

Quicome

Gauss’s graph needs some explaining. The horizontal axis describes
a set of outcomes, for instance the weight of baguettes or the distance of
stars. The vertifal axis is the probability of those outcomes. A curve plot-
ted on a graplt with these parameters is known as a distribution. It shows
us the spread of outcomes and how likely each is.

There are lots of different types of distributions, but the most basic
type is described by the curve above. The bell curve is also known as the
nortnal distribution, or the Gaussian distribution. Originally it was known
as the curve of error, but because of its distinctive shape, the term bell curve
has become more common. The bell curve has an average value, which [
have marked X, called the mean. The mean is the most likely outcome. The
further you go from the mean, the less likely the outcome will be.

When you take two measurements of the same thing and the process
has been subject to random error, you tend not to get the same result.
However, the more measurements you take, the more the distribution of
outcomes begins to look like the bell curve; that is, the outcomes cluster
symmetrically around a mean value. Of course, a graph of measurements
won't give you a continuous curve—it will give you (as with my baguettes}
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ajagged landscape of fixed amounts. The bell curve is a theoretical ideal of
the pattern produced by random error. The more data we have, the closer
the jagged landscape of outcomes will fit the curve,

In the latc nineteenth century, the French mathematician Henri Poin-
caré knew that the distribution of an outcome that is subject to random
measurement error will approximate the bell curve. Poincaré, in fact, con-

ducted the same experiment with baguettes as 1 did, but for a different -

reason. He suspected that his local boulangerie was ripping him off by
selling underweight ioaves, so he decided to use mathematics in the inter-
est of justice. Every day for a year he weighed his daily 1-kilogram loaf.
Poincaré knew that if the weight was less than 1 kilogram a few times, this
was not evidence of malpractice, because one would expect the weight to
vary above and below the specified 1 kilogram. And he conjectured that
the graph of bread weights would resemble a normal distribution—since
the errors in making the bread, such as how much flour is used and how
long the loaf is baked, are random.

After a year he looked at all of the data he had collected. Sure enough,
the distribution of weights approximated the bell curve. The peak of the
curve, however, was at 50 grams. In other words, the average weight was
0.950 kilogram, not 1 kilogram, as advertised. Poincarés suspicions were
confirmed. The eminent scientist was being cheated by an average of 50
grams per loaf. According (o popular legend, Poincar¢ alerted the Parisian
authorities and the baker was given a stern warning.

After his small victory for consumer rights, Poincaré did not let it lie.
He continued to measure his daily loaf, and after the second year saw that
the shape of the graph was not a proper bell curve; rather, it was skewed to
the right. Since he knew that total randomness of error produces the bell
curve, he deduced that some nonrandom event was affccting the loaves
he was being sold. Poincaré concluded that the baker hadn’t stopped his
cheapskate, short-measure ways, but instead was giving Poincaré, the
squeaky wheel, the largest loaf at hand, thus introducing bias in the dis-
tributjon. Unfortunately for the boulanger, his customer was the cleverest
man in France. Again, Poincaré informed the police,

Poincarés method of baker baiting was prescient; it is now the theo-
retical basis of consumer protection. When shops sell products at specified
weights, the product does not legally have to be that exact weight—it can-
not be, since the process of manufacture will inevitably make some jtems a
little heavier and some a little lighter. The job of trading-standards officers
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s to take random samples of products on sale and draw up graphs of their
weights. For any product they measure, the distribution of weights must
fall within a bell curve centered on the advertised mean.

Half a century before Poincaré saw the bell curve in bread, another math-
ematician was seeing it wherever he looked. The Belgian Adolphe Quételet
was a geometer and astronomer by training, but he soon became side-
tracked by a fascination with data—more specifically, with finding pat-
terns in figures. In one of his early projects, Quételet examined French
national crime statistics, which the government started publishing in 1825.
Quételet noticed that the number of murders was pretty constant every
year. Even the propartion of different types of murder weapons—whether
it was perpetrated by a gun, a sword, a knife, a fist, and so on—stayed
roughly the same. Today this observation is unremarkable—indeed, the
way we run our public institutions relies on an appreciation of, for exam-
ple, crime rates, exam pass rates and accident rates, which we expect 1o
be comparable every year—but Quételet was the first person to notice the
amazing regularity of social phenomena when populations are considered
as @ whele. i any one year, it was possible to predict fairly accurately how
maiy murders would occur. Quéteier was roubled by the deep quesijons
about personal responsibility this pattern raised and, by extension, about
the ethics of punishment. Jf society was like a machine that produced a
regular number of murderers, didn't this indicate that murder was the
fault of society and not the individual?

Quételet’s ideas transformed the use of the word statistics, whose orig-
inal meaning had little to do with numbers. The word was used to describe
gencral facts about the stae, as in the type of information required by
statesmen. Queételel turned statistics into a much wider discipline, one
that was less about staiecrafi and more aboul the mathematics of collec-
tive behavior. He could not have dene this without advances in probability
theory, which provided techniques to analyze the randomness in data. In
Brussels in 1853 Quételet hosted the first international conference on sta-
tistics.

Queételet’s insights on collective behavior reverberated in other sci-
ences. If by looking at data from human populations you could detect
reliable patterns, then it was only a small leap to realize that populations
of, for example, atoms also behaved with predictable regularities. James



Clerk Maxwell and Ludwig Boltzmann were indebted to Quételet’s statis-
tical thinking when they came up with the kinetic theory of gases, which
explains that the pressure of a gas is determined by the collisions of its
molecules traveling 'randomly at different velocities. Though the velocity
ofany individual molecule cannot be known, the molecules overall behave
in a predictable way. The origin of the kinetic theory of gases is an interest-
ing exception to the general rule that developments in the social sciences
are the result of advances in the natural sciences. In this case, knowledge
flowed in the other direction.

The most common pattern that Quételet found in all of his research
was the bell curve. It was ubiquitous in data about human populations.
sets of data in those days were harder to come by than they are now, so
Quételet scoured the world for them with the doggedness of a professional
collector. For example, he came across a study in the 1814 Edinburgh Medi-
cal Journal containing chest measurements of 5,738 Scottish soldiers, Qué-
telet drew up a graph of the numbers and showed that the distribution of
chest sizes traced a bell curve with a mean of about 40 inches. From other
sets of data he showed that the heights of men and women also plot a bell
curve. To this day the retail industry relies on Quételet’s discoveries. The
reason why clothing shops stock more mediums than smalls and farges
is that the distribution of human sizes corresponds roughly to the bell
curve,

Quételet died in 1874. A decade later, across the English Channel, a
60-year-old man with a bald head and fine Victorian whiskers could fre-
quently be seen on the streets of Britain gawking at women and rummag-
ing around in his pocket. Francis Galton was an eminent scientist who had
devised a way to measure female attractiveness. In order to discreetly reg-
ister his opinion on passing women, he would prick a needle in his pocket
into a cross-shaped piece of paper, to indicate whether she was “attrac-
tive,” “indifferent” or “repellent” After completing his survey, he compiled
a map of the country based on looks. The highest-rated city was London
and the lowest-rated was Aberdeen.

Galton was probably the only man in nineteenth-century Europe
who was even more obsessed with gathering data than Quételet was.
As a young scientist Galton took the temperature of his daily pot of tea,
together with information such as the volume of boiling water used and
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how delicious it tasted. His aim was to establish how to make the perfect
cuppa. (He reached no condlusions.) Galton also built an “anthropometric
laboratory”—a sort of walk-in clinic in London, where members of the
public could come to have their height, weight, strength of grip, swifi-
ness of blow, eyesight and other physical attributes measured. Galton’s lab
compiled details on more than 10,000 people, and he achieved such fame
that Prime Minister William Gladstone even dropped in to have his head
measured,

Galton’s research corroborated Quételet’s, in that it showed that the
variation in human populations was rigidly determined. Galton too saw
the bell curve everywhere. In fact, the frequency of the appearance of the
bell curve led him to pioneer the term “normal” as the appropriate name
for the distribution. ‘The circumference of a human head, the size of the
brain and the number of brain fibers all produced bell curves, though Gal-
ton was especially interested in nonphysical attributes like intelligence. IQ
tests hadnt been invented at that time, so Galton looked for other mea-
sures of intelligence. He found them in the results of the admission exams
at the Royal Military Academy at Sandhurst. The exam scores, he discov-
ered, also conformed to the bell curve. It filled him with a sense of awe. ]
know of scarcely anything so apt to impress the imagination as the won-
derful form of cosmic order expressed by the [bell curve],” he wrote. “The
lew would have been personified by the Greeks and deified, if they had
known of it. Ii reigns with serenily and in complete self-effacement amidst
the wildest confusion. The huger the mob, and the greater the apparent
anarchy, the more perfect is its sway. It is the supreme law of unreason”

Galton invented a beautifully simple machine that explains the math-
emnatics behind his cherished curve and called it the quincunx. The word’s
original meaning is the i pattern of five dots on a die, and the contrap-
tion is a type of pinball machine in which each horizontal line of pins is
oftset by half a position from the line above. A ball is dropped into the
quincuny at the same point, and the ball then bounces between the pins
until it falls out the bottom into a rack of columns, After raany balls have
been dropped in, the shape they make along the bottom resembles a bell
curve,

We can understand what is going on using probability. First, imagine
a quincunx with just one pin and say that when a ball hits the pin, the
outcome is random, with a 50 percent chance that it bounces to the left
and a 50 percent chance that it bounces to the right. In other words, it has
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The quincurx.

a probability of % of ending up one place to the left and a probability of %
of being one place to the right.

Now, let’s add a second row of pins. The ball will either fail left and then
left, which I will call LL, or LR or RL or RR. Since moving left and then
right is equivalent to staying in the same position, the L and R together
cancel each other out (as do the R and L), so there is now a %4 chance the
ball will end up one place to the left, a % chance it will be in the middle
and % it will be to the right,

Repeating this for the third row, the equally probable options of where
the ball will fall are LLL, LLR, LRL, LRR, RRR, RRL, RLR, RLL. This gives
us probabilities of % of landing on the far left, % of landing on the near
left, % of landing on the near right and % of landing on the far right.

In other words, if there are two rows in the quincunx and we intro-
duce lots of balls in the machine, the law of large numbers says that the
balls will fall along the bottom so as to approximate the ratio 1:2:1.

If there are three rows, they will fall in the ratio 1:3:3:1.

If there are four rows, they will fall in the ratio 1:4:6:4:1.

If I carry on working out probabilities, a ten-row quincunx will pro-
duce balls falling in the ratio 1:10:45:120:210:252:210:120:45:10:1.

Plotting these numbers gives us the first of the shapes on page 255.
The shape becomes even more familiar the more rows we include. Also
shown are the results for 100 and 1,000 rows as bar charts. {Note that only
the middle sections of these two charts are shown since the values to the
left and right are too small to see.)

So, how does this pinball game relate to what goes on in the real
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world? Imagine that each row of pins in the quincunx is a random vari-
able that will create an error in measurement. Either it will add a small
amount to the correct measurement or it will subtract a small amount.
In the case of Galileo and his telescope (page 248}, one row of pins could
represent whether there is a thermal front passing through, and another
could represent the pollution in the air. Each variable contributes an error
either one way or the other, just as in the quincunx the ball will bounce left
or right, In any measurement there may be many millions of unobservable
random errors—their combined errors, however, will give measurernents
that are distributed like a bell curve.
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If the characteristics of a population are normally distributed, in other
words are clustered around an average in the shape of a bell curve, and if



the bell curve is produced through random error, then Quételet argued,
the variation in human characteristics can be seen as errors from a para-
digm. He called this paradigm I'homme moyen, “the average man” Pop-
ulations, he said, were made up of deviations from this paradigm. In
Quételet’s mind, being average was something to aspire to, since it was a
way of keeping society in check—deviations from the average, he wrote,
led to “ugliness in body as well as vice in morals” Even though the con-
cept of 'homme moyen never gained acceptance in science, its use filtered
down to society at large. We often talk about morality or taste in terms of
what an average representative of a population may think or feel about it,
such as what is seen as acceptable “in the eyes of the average man”

Whereas Quételet extolled averageness, Galton looked down on it.
Galton, as I mentioned before, saw that exam results were normally dis-
tributed. Most people scored about average, while a few got very high
marks and a few very low. Galton, incidentally, was himself from a very
above-average family. His first cousin was Charles Darwin, and the two
men corresponded regularly about their scientific ideas. About a decade
after Darwin published On the Origin of Species, Galton started to theo-
rize on how human evolution itself could be guided. He was interested in
the heritability of smarts and wondered how it might be possible to
improve the overall intelligence of a population. He wanted to shift the bell
curve to the right. To this end, Galton suggested a new field of study about
the “cultivation of race,” or improving the intellectual stock of a popula-
tion through breeding. He had thought to call his new science viticulture,
from the Latin vita, life, but eventually settled on etgenics, from the Greek
eu, good, and genos, birth. (The usual meaning of “viticulture,” grape cul-
tivation, comes from vitis, Latin for vine, and dates from around the same
time.) Even though many liberal intellectuals of the late nineteenth cen-
tury and early twentieth century supported eugenics as a way to improve
society, the desire to “breed” srnarter humans was an idea that was soon
distorted and discredited. In the 1930s eugenics became synonymous with
murderous Nazi policies to create a superior Aryan race.

In retrospect, it is easy to see how ranking traits—such as intelligence
or racial purity—can lead to discrimination and bigotry. Since the bell
curve appears when human features are measured, the curve has become
synonymous with attempts to classify some humans as intrinsically bet-
ter than others. The highest-profile example of this was the publication
in 1994 of The Bell Curve by Richard ]. Herrnstein and Charles Murray,
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The resulting pattern is reminiscent of the Sierpinsks carpet, the piece
of mathematical upholstery 1 discussed in Chapter Two, in which a square
is divided into nine sub-squares and the central one is removed, with the
same process being repeated with each of the sub-squares, ad inﬁnitur?l.
The triangutar version of the Sierpinski carpet is the Sierpinski triangle, 1‘n
which an equilateral triangle is divided into four identical equilateral tri-
angles, of which the middle one is removed. The three remaining triangles
are then subjected to the same operation—divide into four and remove the
middle one. Here are the first three iterations:
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Il we extend the above method of coloring Pascal’s triangle to more
and more lines, the pattern looks more and more like the Sierpinski tri-
angle. In fact, as the limit approaches infinity, Pascals triangle becomes the
Sierpinski triangle.

Sierpinski is not the only familiar friend we find in these black-and-
white tiles. Consider the size of the white triangles down the center of
the main triangle. The first is made up of one square, the second is made
up of 6 squares, the third is made of 28, and the next ones 120 and 496
squares. Do these numbers ring any bells? Threc of them—6, 28 and 496—
are perfect numbers, which I covered in Chapter Seven. This occurrence
is a remarkable visual expression of a seemingly unrelated abstract idea.

Ancient Indian interest in Pascal’s triangle concerned combinations of
objects. For instance, imagine we have three fruits: a mango, a tychee and
a banana. There is only onc combination of three items: mange, lychee,
banana. If we want 1o select only two fruit, we can do this in three different
ways: mango and lychee; mango and banana; lychee and banana. There are
also only three ways of taking the fruit individually, which is each fruil on
its own. The final option is to select zero fruit. and this can happen in only
one way. In other words the numbey of combinations of (hree difierent
fruit produces the string 1, 3. 3, 1--the third line of Pascal’s triangle.

If we had four objects, the number of combinations when taken none
at a time, individually, two at a time, three at a time and four at a time is
I, 4, 6, 4, 1 —the fourth line of Pascal’s triangle. We can continue this for
more and more objects and we see that Pascal’s triangle is a reference table
for the arrangement of things. If we had n items and wanted to know how
many combinations we could make of m of them, the answer is exactly the
mith position in the nth row of Pascal’s triangle. (Note: by convention, the
leftmost 1 of any row is taken as the zeroth position in the row.) For exam-
ple, how many ways are there of grouping three fruits from a selection of
seven fruits? There are 35 ways, since the third position on row seven is 35.

Now, let’s move on to start combining mathenatical objects. Consider
the term x + y. What is (x +y)?7 It is the same as (x + y}(x + y). To expand
this, we need to multiply each term in the first bracket by each term in the
second. So, we get xx + xy + yx + yy, or x* + 2xy + y% If we carry on, we
can see the pattern more clearly. The coefficients of the individual terms
are the rows of Pascal’s triangle.
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The mathematician Abraham de Moivre, a Hugenot refugee living in
London in the early eighteenth century, was the first to understand that
the coeflicients of these equations will approximate a curve the more times
you multiply (x + ) together. He didn't call it the bell curve, or the curve of
error, or the normal distribution, or the Gaussian distribution, which are
the names it later acquired. The curve made its first appearance in math
literature in de Moivre’s 1718 book on gaming, The Doctrine of Chances.
This was the first textbook on probability theory, and another example of
how scientific knowledge flourished thanks 1o gambling.

I've been treating the bell curve as if it is one curve, when, in fact, it is a
family of curves. They all look like a bell, but some are wider than others.

Here’s an explanation for why we get different widths. If Galileo, for
example, measured planetary orbits with a twenty-first-century telescape,
the margin of error would be less than if he were using his sixieenth-cen-
tury telescope. The modern instrument would produce a much thinner
bell curve than the antique one. The errors would be much smaller, but
they would stili be distributed normally.

The average value of a bell curve is called the mean. The width is called
the deviation. If we know the mean and the deviation, then we know the
shape of the curve. It is incredibly convenient that the normal curve can
be described using only two parameters. Perhaps, though, it is too con-

Bell curves with different deviations.
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venient. Often, stafisticians are overly eager (o find the bell curve in their
data. Bill Robinson, an economist who heads KPMG's forensic accounting
division in London, admits this is the case. “We love to work with normal
distributions because it has mathematical properties that have been very
well explored. Once we know it’s a nermal distribution, we can start (o
make all sorts of interesting statements.”

Robinson’s job, in basic terms, is to deduce, by looking for patterns in
huge data sets, whether someone has been cooking the books. He is carry-
ing out the same strategy that Poincaré used in weighing the loaves every
day, except that Robinson is looking at gigabytes of financial data and has
much more sophisticated statistical tools at his disposal.

Robinson said that his department tends 1o work on the assumption
that for any set of data, the default distribution js the normal distribution.
“I think in the financial markets it is frue that we have assumed a normal
distribution when perhaps it doesn’t work” In recent years, in facl, there
has been a backlash in both academia and finance against the historic reli-
ance on the normal distribution.

When a distribution is less concentrated around the mean than the
bell curve it is called platykaortic, from the Greek words platus, meaning
flat, and kurfos, bulging. Conversely, when a distribution is more con-
centrated around the mean it is called {eptokirtic, from the Greek lepioc
meaning thin. William Sealy Gosset. a statistician who worked i‘o:" the
Guinness brewery in Dublin, drew the following aide-mémoire in 1908 to
remember which was which: a duck-billed platypus was platykurtic and
the kissing kangaroos were leptokurtic. He chose kangaroos because they
are “noted for ‘lepping, though, perhaps, with equal reason they should be
hares!” Gosset’s sketches are the origin of the term tail for describing the
far-left and far-right sections of a distribution curve,

When economists talk of distributions that are Jat-tailed or heavy-
lailed, they are talking of corves that stay higher than normal from the
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Flatykurtic and feptokurtic distributions,
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axis at the extremes, as if Gossel’s animals have larger than average tails.
These curves describe distributions in which extreme events are more
likely than if the distribution were normal. For instance, if the variation in
the price of a share was fat-tailed, it would mean there was more chance
of a dramatic drop, or hike, in price than if the variation was normally
distributed. For this reason, it can sometimes be reckless to assume a bell
curve over a fat-tailed curve.

The economist Nassim Nicholas Taleb’s position in his best-selling
book The Black Swan is that we have tended to underestimate the size and
importance of the tails in distribution curves. He argues that the bell curve
is a historically defcciive model because it cannot anticipate the oceur-
rence of, or predict the impact of, very rare, extreme events—such as a
major scientific discovery like the invention of the Internet, or a terrorist
attack like 9/11. “The ubiquity of the {normal distribution} is not a prop-
erty of the world,” he writes, “but a problem in our minds, stemming from
the way we look at it”

The desire to see the bell curve in data is perhaps most strongly felt
in education. The awarding of grades from A to F in end-of-year exams is
based on where a pupil’s score falls on a bell curve, which the distribution
of grades is expected to approximate. The curve is divided into sections,
with A representing the top section, B the next section down, and so on.
For the education system to run smoothly, it is important that the per-
centages of pupils getting grades A to I from year to year are comparable,
If there are too many As or too many Fs in one particular year, the con-

sequences—not enough or too many peop]e in certain courses—would
be a strain on resources. Exams are speciﬁcally designed in the hope that
the distribution of results replicates the bell curve as much as possible—
irrespective of whether or not this is an accurate reflection of intelligence,
It has even been argued that the reverence some scientists have for the

bell curve encourages sloppy practices. We saw from the quincunx that
random eirors are distributed normally. So, the more random errors we
can introduce into measurement, the more likely it is that we will get a
bell curve from the data—even if the phenomenon being measured is not
normally distributed. When the normal distribution is found in a set of

data, this could simply be because the measurements have been gathered

with too little care,
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Which brings me back to my baguetles. Were their weights really nor-
mally distributed? Was the 1ail thin or fat? As yow'll recall, I weighed 100
baguettes. ‘The results showed some promising trends—there was a mean
of somewhere around 400 grams and a more or less symimetrical spread
between 380 and 420 grams. If I had been as indefatigable as Henri Poin-
caré, I would have continued the experiment for a year and had 365 (give
or take days of bakery closure) weights to compare. With more data, the
distribution would have been clearer. Still, my smaller sample was enough
to get an idea of the pattern forming. § used a trick, compressing my
results by drawing the graph with a scale that grouped baguette weights
in bounds of 8 grams rather than I gram. This crealed the following
graph:
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Upon drawing this | felt relief, as it really looked as though my ba-
guette experiment was producing a bell curve. My facts appeared to be
fitting the theory. But when I looked closer, the graph wasn't really like
the bell curve at all. Yes, the weights were clustered around a mean, but
the curve was clearly not symmetrical. The left side of the curve was not as
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steep as the right side. It was as if there was an invisible magnet stretching
the curve a little to the left.

I could therefore conclude one of two things. Either the weights of
Greggs's baguettes were not normally distributed, or they were normally
distributed but some bias had crept into my experimentation process. 1
had an idea of what the bias might be. I had been storing the uneaten
baguettes in my kitchen, and I decided to weigh one that was a few days
old. To my surprise, it was only 321 grams—significantly lower than the
lowest weight I had measured. It dawned on me then that baguette weight
was not fixed, because bread gets lighter as it dries out. bought another
loaf and discovered that a baguette loses about 15 grams between 8 a.m.
and noon.

It was now clear that my experiment was flawed. I had not taken into
account the hour of the day when I took my measurements. It was aimost
certain that- this variation was providing a bias to the distribution of
weights. Most of the time I was the first person in the shop, and weighed
my loaf at about 8:10 a.m.; but sometimes 1 got up late, This random
variable was not normally distributed, since the mean would have been
between 8 .M. and 9 a.m., but there was 1o tail before 8 a.m. as the shop
was closed. The tail on the other side went all the way to Junchtime. Then
something else occurred to me. What about the ambient temperature? [
had started my experiment at the beginning of spring. It had ended at the
beginning of summer, when the weather was significantly hotter. I looked
at the figures and saw that my baguette weights were lighter on the whole
toward the end of the project. The summer heat, I assumed, was drying
them out faster, Again, this variation could have had the effect of stretch-
ing the curve leftwards.

My experiment may have shown that baguette weights approximated
a slightly distorted bell curve, but what ] had really learned was that mea-
surement is never so simple. The normal distribution is a theoretical ideal,
and one cannot assume that all results will conform to it. I wondered about
Henri Poincaré. When he measured his bread did he eliminate bias due to
the Paristan weather, or the time of day of his measurements? Perhaps he
had not demonstrated that he was being sold a 950-gram loaf instead of
a I-kilogram loaf at all, but had instead proved that from baking to mea-
suring, a 1-kilogram loaf reduces in weight by 50 grams. The history of
the bell curve, in fact, is a wonderful parable about the curious kinship
between theoretical and applied science. Poincaré once received a letter
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from the French physicist Gabriel Lippmann, who brilliantly summed up
why the normal distribution was so widely exalted: “Everybody believes
in the [bell curve]: the experimenters, because they think it can be proved
by mathematics; and the mathematicians, because they believe it has been
established by observation” In science as in so many other spheres, we
often choose to see what serves our own interests.




