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rule. He did not even employ an algebraic equation; he used Newmodrlls olld-

fashioned geometric notation to calculate and add areas. Nor did h:k e;e_ o;)
his theorem into a powerful mathematical method. Above all, unlike Price,

i ion Hume, religion, or God.

. d]clin:t?a:\g.l t;‘mIZEHCOautiously confgmed himself to the probabilir)" of eve‘nts and
did not mention hypothesizing, predicting, deciding,.or taking acuo.n. He
did not suggest possible uses for his work, whether in tt.1ec.)logy. sc1en:=.c;
or social science. Future generations would extend Bayes dlscover‘):rl .:io t
all these things and to solve a myriad of practical problem.s.‘ Bay?s i nzr
even name his breakthrough. It would be called the probability odc;uses‘ *
inverse probability for the next 200 years. It would not be named Bayesia

until the 1950s.
In short, Bayes took the first steps. He composed the prelude for what

was to come.
For the next two centuries few read the Bay ‘
this is the story of two friends, Dissenting clergymen a.nc'i amateur mathema-
ticians, whose labor had almost no impact. Almost, that is, except I(lm t s ci::z
person capable of doing something about it, the great French mathematic

Pierre Simon Laplace.

es-Price article. In the end,

the man who
did everything

Just across the English Channel from Tunbridge Wells, about the time that
Thomas Bayes was imagining his perfectly smooth table, the mayor of a tiny
village in Normandy was celebrating the birth of a son, Pierre Simon Laplace,
the future Einstein of his age.

Pierre Simon, born on March 23, 1749, and baptized two days later, came
from several generations of literate and respected dignitaries. His mother's rela-
tives were well-to-do farmers, but she died when he was young, and he never
referred to her. His father kept the stagecoach inn in picturesque Beaumont-
en-Auge, was a leader of the community's 472 inhabitants, and served 30 years
as mayor. By the time Pierre Simon was a teenager his father seems to have
been his only close relative. In years to come Pierre Simon's decision to become
a mathematician would shatter their relationship almost irretrievably.’

Fortunately for the boy there was never any question about his getting
an education. Attending school was becoming the norm in France in the
1700s, an enormous revolution fueled by the Catholic Church's fight against
Protestant heresy and by parents convinced that education would enrich
their children spiritually, intellectually, and financiaily. The question was,
what kind of schooling?

Decades of religious warfare between Protestants and Catholics and
several horrendous famines caused by cold weather had made France a de-
terminedly secular country intent on developing its resources. Pierre Simon
could have studied modern science and geometry in one of the country’s
many new secular schools. Instead, the elder Laplace enrolied his son in a lo-
<al primary and secondary school where Benedictine monks produced clergy
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for the church and soldiers, lawyers, and bureaucrats for the crown. Thanks At graduation Laplace faced an anguishing dilemma. Hi i

to the patronage of the Duke of Orleans, local day students like Pierre Simon | gree permitted him to take either the priestly %'ows o ca'l'b 15 master s fif:-
attended free. The curriculum was conservative and Latin-based, heavy on of abbeé, signifying a low-ranking clergyman who CDuldinl acy Ordt}.Ie utl'e
copying, memorization, and philosophy. But it left Laplace with a fabulous property. Abbés did not have good reputations; Vohaire c:ljr:; a;: m.tllent
memory and almost unbelievable perseverance indefinable being which is neither ecclesiastic 1"10!‘ secular . ) y:nf:; nz::,t
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Although the monks probably did not know it, they were competing who are known for their debauchery.” An engraving of th iod, *
with the French Enlightenment for the child’s attention. Contemporaries Does the Abbé Think of It?" shows the cler gmang . ¢ perlod,. V_Vhat
called it the Century of Lights and the Age of Science and Reason, and the down a lady's bosom as she dresses.* Still ‘hegildel- I.Pfielrlng aPprecu-nvely
popularization of science was its most important intellectual phenomenon. e It ' aplace wanted his son
Given the almost dizzying curiosity of the times, it is not surprising that, If Laplace had been willing to become an abbé, his fath i
shortly after his tenth birthday, Pierre Simon was profoundly affected by 2 ] helped him financially, and Laplace could have comb:ledls hat ;r m:[ght- have
spectacular scientific prediction.’ A number of abbés supported themselves in science, the :nurcf e seenee
Decades before, the English astronomer Edmond Halley had predicted _ Jean Antoine Nollet, who demonstrated s ec[acul;u-' - ost am?us being
the reappearance of the long-tailed comet that now bears his name. A trio _ the paying public. For the edification of thl: i andp YSICS ?I;PEF iments to
of French astronomers, Alexis Claude Clairaut, Joseph Lalande, and Nicole- R e T A e T i linegof lsoque]zr'l of France, Nollet
Reine Lepaute, the wife of a celebrated clockmaker, solved a difficult three- 1 leap comically into the air. Two abbés were even el > dlersdt]o make-tl?em
body problem and discovered that the gravitational pull of Jupiter and Saturn Royal Academy of Sciences. Stil, the lot of most abbe‘ae‘ to. e prestlglous
would delay the arrival of Halley's comet. The French astronomers accurately lucrative nor intellectually Cha]ienging e f-s;lenr:ls;s was nel‘ther
pinpointed the date—rmid-April 1759 plus or minus a month—when Europe- tutoring the sons of rich nobles or tea;:hin ele’meln}t/ o ;W‘le‘fel jobs
ans would be able to see the comet returning from its orbit around the sun. science [n secondary schools. UIliVErSi[‘y-le%el oppor::; ig:: ‘::::t;ic; ?.tn:ii
ite

The comel’s appearance on schedule and on course electrified Europeans.
Years later Laplace said it was the event that made his generation realize that
extraordinary events like comets, eclipses, and severe droughts were caused
not by divine anger but by natural laws that mathematics could reveal.

Laplace's extraordinary mathematical ability may not yet have been ap-
parent when he wurned 17 in 1766, because he did not go to the University of
Paris, which had a strong science faculty. Instead he went to the University
of Caen, which was closer 1o home and had a solid theological program
suitable for a future cleric.

Yet even Caen had mathematical firebrands offering advanced lectures
on differential and integral calcutus. While English mathematicians were
getting mired in Newton's awkward geometric version of calculus, their
rivals on the Continent were using Gottfried Leibniz's more supple algebraic
calculus. With it, they were forming equations and discovering a fabulous
wealth of enticing new information about planets, their masses and details
of their orbits. Laplace emerged from Caen a swashbuckling mathematical
virtuoso eager 1o take on the scientific world. He had alse become, no doubt

1 his father’s horror, a religious skeptic.

because during the 1700s professors transmitted knowledge from the past
instead of doing original research.

But Caen had convinced Laplace that he wanted 1o do something quite
new. He wanted to be a full-time, professional, secular, mathematical re-
searcher. And he wanted to explore the new algebra-generated, data-rich
world of science. To his father, an ambitious man in bucolic Franc'e a career
in mathematics must have seemed preposterous. :

Young Laplace made his move in the summer of 1769, shortly after com-
pleting his studies at Caen. He left Normandy and traveled to Paris, clutchin
2 letter of recommendation 1o Jean Le Rond d'Alembert, the mos; powerfugl
Eathex‘mticlan of the age, one of Europe’s most notorious anticlerics, and

e‘oblect of almost incessant Jesuit attacks. D'’Alembert was a star of the

Fnhghtenment and the chief spokesman for the Encyclopédie, which was mak-

:?g:: :;?;mol?s b(;dy of empirical knowledge universally available, scien-

Lapl.a ’ eﬂe: cri re 1g10%15 c.iogma. By throwing in his lot with d'Alemberr,

S l.el:; i); ::lu:3 his ties to the Catholic Church. We can only imagine

. M.[ enuc: :;;e know [hfl[ Laplace did not return home for 20
e old man’s funeral.
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Once in Paris, Laplace immediately approached the great d’Alembert and
chowed him a four-page student essay on inertia. Years later Laplace could
still recite passages from it Although besieged by applicants, d’Alembert was
so impressed that within days he had arranged a paying job for Laplace as
an instructor of mathematics at the new secular, mathematics-based Royal
Military School for the younger sons of minor nobles. The school, located
behind Les Invalides in Paris, provided Laplace with a salary, housing, meals,
and money for wood to heat his room in winter. It was precisely the kind
of job he had hoped to avoid.

Laplace could have tried to find work applying mathematics to practi-
cal problems in one of the monarchy's numerous research establishments
or manufacturing plants. Many mathematically talenied young men from
modest families were employed in such institutions But Laplace and his
mentor were aiming far higher. Laplace wanted the challenge of doing basic
research full time. And to do that, as d’Alembert must have told him, he had
to get elected to the Royal Academy of Sciences.

In striking contrast to the amateurism of the Royal Society of London,
the French Royal Academy of Sciences was the most professional scientific
institution in Europe. Although aristocratic amateurs could hecome honor-
ary members, the organization’s highest ranks were composed of working
scientists chosen by merit and paid to observe, collect, and investigate facts
free of dogma; to publish their findings after peer review; and to advise the
government on technical issues like patents. To augment their low salaries,
academicians could use their prestige 10 cobble together various part-time
jobs.

Without financial support from the church or his father, however, La-
place had to work fast. Since most academy members were chosen on the
basis of a long record of solid accomplishment, he would have to be elected
over the heads of more senior men. And for that to happen, he needed to
make a spectacular impact.

D'Alembert, who had made Newton’s revolution the focus of French
mathematics, urged Laplace to concentrate on astronomy D'Alembert had a
clear problem in mind.

Over the previous two centuries mmathematical astronomy had made
great strides. Nicolaus Copernicus had moved Earth from the center of the
solar system to a modest but accuraie position among the planets; Johannes
Kepler had connected the celestial bodies by simple taws; and Newton had
introduced the concept of gravity. But Newion had described the motions

The Man Who Did Everything

of heavenly bodies roughly and without explanation. His death in 1727 left
Laplace’s generation an enormous challenge: showing that gravitation was
not a hypothesis but a fundamental law of nature.

Astronomy was the era’s most quantified and respected science, and
only it could test Newton's theories by explaining precisely how gravit.zuion
affects the movements of tides, interacting planets and comets, our moon
and the shape of Earth and other planets, Forty years of empiri.cal data had.
been collected, but, as d'Alembert warned, a single exception could brin
the entire edifice tumbling down. :

The burning scientific question of the day was whether the universe
was stable. If Newton's gravitational force operates throughout the universe
why don't the planets collide with each other and cause the cosmic Armar
?f:l,(]i;:[ie;:;;bed in the biblical book of Revelation? Was the end of the

Astronomers had long been aware of alarming evidence suggesting that
the solar system was inherently unstable. Comparing the actual positions of
the most remote known planets with centuries-old astronomical observa-
tions, they could see that Jupiter was slowly accelerating in its orbit around
the sun while Saturn was slowing down. Eventually, they thought, Jupiter
would smash into the sun, and Saturn would spin off into space. The ;IJroblem
of predicting the motions of many interacting bodies over long periods of
fime is complex even today, and Newton concluded that God's miraculous
intervention kept the heavens in equilibrium. Responding to the challenge
Laplace decided to make the stability of the universe his lifework. He saici
his tool would be mathematics and it would be like a telescope in the hands
of an astronomer.

For a short time Laplace actually considered medifying Newton's theory
b?' making gravity vary with a body's velocity as well as with its mass and
distance. He also wondered fleetingly whether comets might be disturbin
t?}e orbits of Jupiter and Saturn. But he changed his mind almost immeg-
diately. The problem was not Newton's theory. The problem was the data
astronomers used.
Newton's system of gravitation could be accepted as true only if it agreed
?Vlft‘h prec?"ise measurements, but observational astronomy was awash with
;llr Orrr'lauon, some of it uncertain and inadequate. Working on the problem
bylgl[:::‘;:r;ds[f:aturn, for.example. Laplace would use observations made
B onomers in 1100 B-C, Chaldeans in 600 BC, Greeks in 200
ans in AD 100, and Arabs in AD 1000. Obviously, not all data were
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equally valuable, How 1o resolve errors, known delicately as discrepancies,
was anybody's guess,

The French academy was tackling the problem by encouraging the
development of more precise telescopes and graduated arcs. And as algebra
improved instrumentation, experimentalists were producing more quantita-
tive results, In a veritable information explosion, the sheer collection and sys-
temnization of data accelerated through the Western world. Just as the number
of known plant and animal species expanded enormously during the 1700s,
so did knowledge about the physical universe. Even as Laplace arrived in
Paris, the French and British academnies were sending trained observers with
state-of-the-art instrumentation to 120 carefully selected locations around the
globe to time Venus crossing the face of the sun; this was a critical part of
Capt. James Cook's original mission to the South Seas. By comparing ali the
measurements, French mathematicians would determine the approximate
distance between the sun and Earth, a fundamental natural constant that
would tell thern the size of the solar system. But sometimes even up-to-date
expeditions provided contradictory data about whether, for instance, Earth
was shaped like an American football or a pumpkin.

Dealing with large amounts of complex data was emerging as a ma-
jor scientific problem. Given a wealth of observations, how could scientists
evaluate the facts at their disposal and choose the most valid? Observational
astronomers typically averaged their three best observations of a particular
phenomenon, but the practice was as straightforward as it was ad hoc; no
one had ever tried to prove its validity empirically or theoretically. The
mathematical theory of errors was in its infancy.

Problems were ripe for the picking and, with his eye on membership
in the Royal Academy, Laplace bombarded the society with 13 papers in five
years. He submitted hundreds of pages of powerful and original mathema-
tics needed in astronomy, celestial mechanics, and important related issues.
Astutely, he timed his reports to appear when openings occurred in the acad-
emy’s membership. The secretary of the academy, the Marquis de Condorcet,
wrote that never before had the society seen “anyone so young, present o
it in so little time, so many important Mémosires, and on such diverse and
such difficult matters.™

Academny members considered Laplace for membership six times but
rejected him repeatedly in favor of more senior scientists. D'Alembert com-
plained furiously that the organization refused to recognize talent. Laplace
considered emigrating to Prussia or Russia to work in their academies.

The Man Who Did Everything

During this frustrating period Laplace spent his free afternoons digging
in the mathematical literature in the Royal Military School’s 4,000-volume
library. Analyzing large amounts of data was a formidable problem, and
Laplace was already beginning to think it would require a fundamentally
new way of thinking. He was beginning to see probability as 2 way to deal
with the uncertainties pervading many events and their causes. Browsing in
the library’s stacks, he discovered an old book on gambling probability, The
Doctrine of Chances, by Abraham de Moivre. The book had appeared in three
editions between 1718 and 1756, and Laplace may have read the 1756 version.
Thomas Bayes had studied an earlier edition.

Reading de Moivre, Laplace became more and more convinced that
probability mighe help him deal with uncertainties in the solar system. Prob-
ability barely existed as a mathematical term, much less as a theory. Outside
of gambling, it was applied in rudimentary form to philosophical questions
like the existence of God and to commercial risk, including contracts, marine
and life insurance, annuities, and money lending.

Laplace's growing interest in probability created a diplomatic problem of
some delicacy because d’Alembert believed probability was too subjective for
science. Young as he was, Laplace was confident enough in his mathematical
judgment to disagree with his powerful patron. To Laplace, the movements
of celestial bodies seemed so complex that he could not hope for precise
solutions. Probability would not give him absolute answers, but it might show
him which data were more likely to be correct. He began thinking about a
method for deducing the probable causes of divergent, error-filled observa-
tions in astronomy. He was feeling his way toward a broad general theory
for moving mathematically from known events back to their most probable
causes. Continental mathematicians did not know yet about Bayes’ discovery,
so Laplace called his idea “the probability of causes™ and “the probability of
causes and future events, derived from past events.™

Wrestling with the mathematics of probability in 1773, he reflected on
its philosophical counterpoint. In a paper submitted and read to the academy
in March, the former abbé compared ignorant mankind, not with God but
with an imaginary intelligence capable of knowing All. Because humnans
can never know everything with certainty, probability is the mathematical
expression of our ignorance: “We owe ta the frailty of the human mind one
of the most delicate and ingenious of mathematical theories, namely the
Science of chance or probabilities.”

The essay was 2 grand combination of mathematics, metaphysics, and
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the heavens that Laplace held to his entire life. His search for a probability
of causes and his view of the deity were deeply congenial. Laplace was all of
one piece and for that reason all the more formidable. He often said he did
not believe in God, and not even his biographer could decide whether he
was an atheist or a deist. But his probability of causes was a mathematical
expression of the universe, and for the rest of his days he updated his theories
about God and the probability of causes as new evidence became available.

Laplace was struggling with probability when one day, ten years after the
publication of Bayes’ essay, he picked up an astronomy journal and was
shocked to read that others might be hot on the same trail. They were not,
but the threat of competition galvanized him. Dusting off one of his discarded
manuscripts, Laplace transformed it into a broad method for determining
the most likely causes of events and phenomena. He called it “Mémoire on
the Probability of the Causes Given Events.”

It provided the first version of what today we call Bayes vule, Bayes-
jan probability, or Bayesian statistical inference. Not yet recognizable as
the modern Bayes' rule, it was 2 one-Slep process for moving backward,
or inversely, from an effect to its most likely cause. As a mathematician in
a gambling-addicted culture, Laplace knew how to work out the gambler’s
future odds of an event knowing its cause (the dice). But he wanted to solve
scientific problems, and in real life he did not always know the gambler’s
odds and often had doubts about what numbers to put into his calculations.
In a giant and intellectually nimble leap, he realized he could inject these
uncertainties into his thinking by considering all possible causes and then
choosing among them.

Laplace did not state his idea as an equation. He intuited it as a principle
and described it only in words: the probability of a cause (given an event)
is proportional to the probability of the event (given its cause). Laplace did
not translate his theory into algebra at this point, but modern readers might
find it helpful 10 see what his statement would look like today:

P(E|C)

PCIE) = 5p g1y

where P(C|E) is the probability of a particular cause (given the data), and
P(E|C) represents the probability of an event or datum (given that cause). The
sign in the denominator represented with Newton's sigma sign makes the
total probability of all possible causes add up to one.

The Man Who Did Everything

Armed with his principle, Laplace could do everything Thomas Bayes
could have done—as long as he accepted the restrictive assumption that all
his possible causes or hypotheses were equally likely. Laplace’s goal, however
was far more ambitious. As a scientist, he needed to study the various pos:
sible causes of a phenomenon and then determine the best one. He did not
yet know how to do that mathematically. He would need 1o make two more
major breakthroughs and spend decades in thought.

Laplace’s principle, the proportionality berween probable events and
their probable causes, seems simple today. But he was the first mathemati-
cian to work with large data sets, and the proportionality of cause and effect
would make it feasible to make complex numerical calculations using onl
goose quills and ink pots. ’

In a mémoire read aloud to the academy, Laplace first applied his new
probability of causes to two gambling problems. In each case he understood
intuitively what should happen but got bogged down trying to prove it math-
ematically. First, he imagined an urn filled with an unknown ratio of black
and white tickets (his cause). He drew a number of tickets from the urn and

based on that experience, asked for the probability that his next ticket woulci
be white. Then in a frustrating battle to prove the answer he wrote no fewer
than 45 equations covering four quarto-sized pages.

His second gambling problem involved piquet, a game requiring both
luck and skill. Two people start playing but stop midway through the game
and have to figure out how to divide the kitry by estimating their relgative
skill levels (the cause). Again, Laplace understood instinctively how to solve
the problem but could not yet do so mathematically.

After dealing with gambling, which he loathed, Laplace moved happily
on to the critical scientific problem faced by working astronomers. How
should they deal with different observations of the same phenomenon?.Three
of the era’s biggest scientific problems involved gravitational attraction on
the motions of cur moon, the motions of the planets Jupiter and Saturn
and the shape of the Earth. Even if observers repeated their measuremem;
at the same time and place with the same instrument, their results could be
stightly different each time. Trying to calculate a midvalue for such discrepant
observations, Laplace limited himself 1o three observations but still needed
seven pages of equations o formulate the problem. Scientifically, he under-
stood the right answer—average the three data points—but he \:vould have
no mathematical justification for doing so until 1810, when, without usin,
the probability of causes, he invented the central limit theorem. ¢
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Although Bayes originated the probability of causes, Laplace clearly dis-
covered his version on his own. Laplace was 15 when the Bayes-Price essay
was published; it appeared in an English-language journal for the English
gentry and was apparently never mentioned again. Even French scientists
who kept up with foreign journals thought Laplace was first and congratulated
him wholeheartedly on his originality.

Mathematics confirms that Laplace discovered the principle indepen-

dently. Bayes solved a special problem about a flat table using a two-siep
process that involved a prior guess and new data. Laplace did not yet know
about the initial guess but dealt with the problem generally, making it useful
for a variety of problems. Bayes laboriously explained and illustrated why
uniform probabilities were permissible; Laplace assurned them instinctively.
The Englishman wanted 10 know the range of probabilities that something
will happen in light of previous experience. Laplace wanted more: as 2 work-
ing scientist, he wanted to know the probability that certain imeasurements
2nd numerical values associated with a phenomenon were realistic. If Bayes
and Price searched for the probability that, on the basis of today’s puddles,
it had rained yesterday and would rain tomorrow, Laplace asked for the
probability that a particular amount of rain would fall and then refined his
opinion over and over with new information to get a better value. Laplace’s
method was immensely influential; scientists did not pay Bayes serious heed
until the twentieth century.

Most strikingly of all, Laplace at 25 was already steadfastly determined 1o
develop his new method and make it useful. For the next 40 years he would
work to clarify, simplify, expand, generalize, prove, and apply his new rule.
Yet while Laplace became the indisputable intellectual giant of Bayes’ rule,
it represented only a small portion of his career. He also made important
advances in celestial mechanics, mathematics, physics, biology. Farth science,
and statistics. He juggled projects. moving from one (0 another and then back
to the first. Happily blazing trails through every field of science known to
his age, he transformed and mathematized everything he touched. He never
stopped being thrilled by examples of Newton's theory.

Although he was fast becoming the leading scientist of his era, the
academy waited five years before electing him a member on March 31, 1773.
A few weeks later he was formally inducted into the world’s leading scien-
tific organization. His mémoire on the probability of causes was published
a year later, in 1774. At the age of 24, Laplace was 2 professional researcher.
The academy's annual stipend, together with his reaching salary, would help
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‘_ support him while he refined his research on celestial mechanics and the
i probability of causes.

Laplace was still grappling with probability in 1781, when Richard Price vis-
ited Paris and told Condorcet about Bayes’ discovery. Laplace immediatel
Jatched onto the Englishman’s ingenious invention, the starting guess ang
incorporated it into his own, earlier version of the probability of ca.uses
Serictly speaking, he did not produce a new formula but rather a statememlz
about the first formula assuming equal probabilities for the causes. The state-
meint gave El;n confidence that he was on the right track and told him that
as long as all his prio i i
* 1775 wahe ‘::r[.u r hypotheses were equally probable, his earlier principle
Laplace could now confidently marry his intuitive grasp of a scientific
situation with the eighteenth century’s passion for new and precise scientific
discoveries. Every time he got new information he could use the answer
from his last solution as the starting point for another calculation. And b
assuming that all his initial hypotheses were equally probable he could eve::
derive his theorem.

e Sy e TR

As Academy secretary, Condorcet wrote an introduction to Laplace’s
essay and explained Bayes’ contribution. Laplace later publicly credited Bayes
with being F}rst when he wrote, “The theory whose principles I explained
some years after, . . . he accomplished i i i
T ——— plished in an acute and very ingenious, though

Over the next decade, however, Laplace would realize with increasing
cl-a.rity and frustration that his mathematics had shortcomings. It limited
hlfll to assigning equal probabilities to each of his initial hypotheses. As a
scientist, he disapproved. If his method was ever going to reflect the actual
. stat‘e of affairs, he needed to be able to differentiate dubious data from more

;:hiuobservations. C.alling all events or observations equally probable could
) _cubede only theoretically. Many dice, for example, that appeared perfectly
k. ‘?{?lte actually skewed. In one case he started by assigning players equal
émergbe!:ilt::doi w.inning. bu: .with each round of play their respective skills
e car[ eal::'l probabilities c-hanged. "“The science of chances must be
e A he = r:mst be modified when we pass from the mathematical
- physical,” he counseled.”
Li‘;;‘l:;gr. ;15 a pragn.m'tist, he realized he had to confront a serious
. k- ::1 ry. Pro!‘:abmq-( problems require multiplying numbers over
) er tossing coin after coin or measuring and remeasuring
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an observation. The process generated huge numbers—nothing as large as
those common today but definitely cumbersome for a man working alone
without mechanical or electronic aids. (He did not even get an assistant 10
help with calculations until about 1785)

Laplace was never one to shrink from difficult computations, but, as
he complained, probability problems were often impossible because they
presented great difficulties and numbers raised to “very high powers.”" He
could use logarithms and an early generating function that he considered
inadequate. But to illustrate how tedious calculations with big numbers could
be, he described multiplying 20,000 x 19,399 % 19,998 % 19,997, etc. and then
dividing by 1 x 2 X 3 X 4 up i0 10,000. In another case he bet in a lottery
only to realize he could not calculate its formula numerically; the French
monarchy's winning number had 90 digits, drawn five at a time.

Such big-number problems were new. Newton had calculated with ge-
ometry, not numbers. Many mathematicians, like Bayes, used thought experi-
ments to separate real problems from abstract and methodological issues.
But Laplace wanted to use mathematics to illuminate natural phenomena,
and he insisted that theories had to be based on actual fact, Probability was
propelling him into an unmanageable world.

Armed with the Bayes-Price starting point, Laplace broke partway
through the logjam that had stymied him for seven years. So far he had
concentrated primarily on probability as a way t0 resolve error-prone astro-
nomical observations. Now he switched gears to concentraic on finding the
most probable causes of known events. To do so, he needed to practice with
a big database of real and reliable values. But astronomy seldom provided
extensive or controlled data, and the social sciences often involved so many
possible causes that algebraic equations were useless.

Only one large amalgamation of truly trustworthy numbers existed in
the 1700s: parish records of births, christenings, marriages, and deaths. In
{771 the French government ordered all provincial officials to report birth
and death figures regularly to Paris; and three years later, the Royal Academy
published 60 years of data for the Paris region. The figures confirmed what
the Englishman John Graunt had discovered in 1662: slightly more boys than
girls were born, in a ratio that remained constant over many years. Scientists
had long assumed that the ratio, like other newly discovered regularities in
nature, must be the result of "Divine Providence.” Laplace disagreed.

Soon he was assessing not gambling or astronomical statistics but in-
fants. For anyone interested in large numbers, babies were ideal. First, they

N
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came in binomials, either boys or girls, and eighteenth-century mathemari-
cians already knew how 1o treat binomials. Second, infants arrived in abun-
dance and, as Laplace emphasized, “It is necessary in this delicate research
to employ sufficiently large numbers in view of the small difference that
exists between . . . the births of boys and girls.™ When the great naturalist
Comie de Buffon discovered a small village in Burgundy where, for five years
running, more girls had been born than boys, he asked whether this village
invalidated Laplace’s hypotheses. Absolutely not, Laplace replied firmly. A
study based on a few facts cannot overrule a much larger one. '

The calculations would be formidable. For example, if he had started
with a 52:48 ratio of newborn boys to girls and a sample of 58,000 boys
Laplace would have had to multiply .52 by itself 57,999 times—and then d(;
a similar calculation for girls. This was definitely not something anyone, not
even the indomitable Laplace, warted to do by hand. '

He started out, however, as Bayes had suggested, by pragmatically assign-
ing equal probabilities to all his initial hunches, whether 50-50, 33-33-33, or
25-25-25-25. Because their sums equal one, multiplication would be eas.ier
He employed equal probabilities only provisionally, as a starting point anci
his final hypotheses would depend on all the observational data he could. add

Next, he tried to confirm that Graunt was correct about the probabiliq;
of a boy’s birth being larger than 50%. He was building the foundation of
the modern theory of testing statistical hypotheses. Poring over records of
christenings in Paris and births in London, he was soon willing 1o bet that
boys would outnumber girls for the next 179 years in Paris and for the next
8,605 years in London. "It would be extraordinary if it was the effect ;Jf
chance,” he wrote, tut-tutting that people really should make sure of their
facts before theorizing about them.”

To transform probability's large numbers into smaller, more manageable
term‘s Laplace invented a multitude of mathematical shortcuts and clever ap-
proximations. Among them were new generating functions, transforms, and
asymptotic expansions. Computers have made many of his shortcuts un:nec-
essary, but generating functions remain deeply embedded in mathematical
:Snzly;sers usc;‘d for praa?cal applications. Laplace used generating functions
= o mloi mat'hema?tlcal wizardry to trick a function he could deal with

0 providing him with the function he really wanted.
N ::;pl;ce, these m'athematif:al pyrotechnics seemed as obvious as com-
ke - To students. frustratlon. he sprinkled his reports with phrases
] easy to see, it is easy to extend, it is easy ta apply, it is obvious
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that. . . ™" When a confused student once asked hosw he had jumped intui-
tively from one equation to another, Laplace had to work hard to reconstruct
his thought process.

He was soon asking whether boys were more apt to be born in certain
geographic regions. Perhaps “climate, food or customs . . . facilitates the birth
of boys™ in London.* Over the next 30-odd years Laplace collected birth ratios
from Naples in the south, St. Petersburg in the north, and French provinces in
between. He concluded that climate could not explain the disparity in births.
But would more boys than girls always be born? As each additional piece of
evidence appeared, Laplace found his probabilities approaching certainty “at
a dramatically increasing rate.”

He was refining hunches with objective data. In building a mathemati-
cal model of scientific thinking, where a reasonable person could develop
a hypothesis and then evaluate it relentlessly in light of new knowledge, he
became the first modern Bayesian. His system was enormously sensitive to
new information. Just as each throw of a coin increases the probability of
its being fair or rigged, so each additional birth record narrowed the range
of uncertainties. Eventually, Laplace decided that the probability of boys
exceeding girls was as “certain as any other moral truth” with an extremely
tiny margin of being wrong*

Generalizing from babies, he found a way to determine not just the
probability of simple events, like the birth of one boy, but also the probabil-
ity of future composite events like an entire year of births—even when the
probability of simple events (whether the next newborn will be male) was
uncertain. By 1786 he was determining the influence of past events on the
probability of future events and wondering how big his sample of newborns

had 1o be. By then Laplace saw probability as the primary way to overcome
uncertainty. Pounding the point home in one short paragraph, he wrote,
“Probability is relative in part to this ignorance, in part to our knowledge . ..
2 state of indecision, . . . it's impossible to announce with certainty.””

Persevering for years, he used insights gained in one science to shed
light on others, researching a puzzle and inventing a mathematical technique
to resolve it, integrating, approximating, and generalizing broadly when
there was no other way to proceed. Like a modern researcher, he competed
and collaborated with others and published reports on his interim progress
15 he went. Above all, he was tenacious. Twenty-five years later he was still
eagerly testing his probability of causes with new information. He combed
65 years' worth of orphanage registries, asked friends in Egypt and Alexander
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von Humboldt in Central America about birth ratios there, and called on
naturalists to check the animal kingdom. Finally, in 1812, after decades of
work, he cautiously concluded that the birth of more boys than girls seemed
10 be “a general law for the human race.”™

To test his rule on a larger sample Laplace decided in 178} to determine the
size of the French population, the thermometer of its health and prosper-
ity. A conscientious administrator in eastern France had carefully counted
heads in several parishes; to estimate the population of the entire nation
he recommended multiplying the annual number of births in France by 26r
His proposal produced what was thought to be France's population, approxi-
mately 25.3 million. But no one knew how accurate his estimate was. Today's
dernographers believe that France’s population had actually grown rapidly,
to almost 28 million, because of fewer famines and because a governmem-'
wrained midwife was touring the countryside promoting the use of soap and
boiling water during childbirth.

Using his probability of causes, Laplace combined his prior informa-
tion from parish records about births and deaths throughout France with
his new information about headcounts in eastern France. He was adjusting
estimates of the nation’s population with more precise information from
particular regions. In 1786 he reached a figure closer to modern estimates
and calculated odds of 1,000 o | that his estimate was off by less than half a
million. In 1802 he was able to advise Napoleon Bonaparte that a new census
should be augmented with detailed samples of about a million residents in
30 representative departments scattered equally around France.

As he worked on his birth and census studies during the monarchy’s
!ast years, Laplace becarne involved in an inflammatory debate about France's
];dicial system. Condorcet believed the social sciences should be as quanti-
E;::;;:::E,_ ;z[;f:;;lj;;:;c:é::r?;lp l-:ransform absolutist France into an
tics to explore a variety of issues H:w i;:Ede I‘" plac'e i “_Se R
T o s s . . e'm can w?: be in a sentence
c il bl il st et L3l stee i g v
theory of probability to questions al:o:tu ;I;clt-;f l?Le agr(:Ed ey hl? r'le'w
o witneseos o uesons shout a proc.e ?xres. the credibility
O represom s o g y !u icial panels and juries, and procedures

and judicial panels.

Lapla im vi
Place took a dim view of most court judgments in France. Forensic

" SCience dj
ld . . P
not exist, so judicial systems everywhere relied on witness testi-
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mony. Taking a witness's statemnent for an event, Laplace asked the probability
that the witness or the judge might be truthful, misled, or simply mistaken.
He estimated the prior odds of an accused person’s guilt at 50-50 and the
probability that a juror was being truthful somewhat higher. Even at that,
if a jury of eight voted by simple majority, the chance that they judged the
accused’s guilt wrong would be 65/256, or more than one in four. Thus for
both mathematical and religious reasons Laplace sided with the Enlighten-
ment’s most radical demand, the abolition of capital punishment: “The pos-
sibility of atoning for these errors is the sirongest argument of philosophers
who have wanted to abolish the death penalty."™ Laplace also used his rule
for more complicated cases where a court must decide among contradictory
witnesses or where the reliability of testimony decreases with each telling.
For Laplace, these questions demonstrated that ancient biblical accounts by
the Apostles lacked credibility.

While still counting babies, Laplace returned to study the seeming insta-
bility of Saturn and Jupiter’s orbits, the problem that had helped sensitize
him early in his career to uncertain data. He did not, however, use his new
knowledge of probability to solve this important problem. He used other
methods between 1785 and 1788 (o determine that Jupiter and Saturn oscillate
gently in an 877-year cycle around the sun and that the moon orbits Earth
in a cycle millions of years long. The orbits of Jupiter, Saturn, and the moon
were not exceptions to Newton's gravitation but thrilling examples of it. The
solar system was in equilibrium, and the world weuld not end. This discov-
ery was the biggest advance in physical astronomy since Newton's law of
gravity.

Despite Laplace's astounding productivity, his life as a professional scientist
was financially precarious. Fortunately, Paris in the 1700s had more educa-
tional institutions and scientific opportunities than anywhere else on Earth.
and academy members could patch jobs together to make a respectable liv-
ing. Laplace tripled his income by examining artillery and naval engineering
students three or four months a year and serving as a scientist in the Duke
of Orleans’ entourage. His increasingly secure position also gave him access
to the government statistics he needed to develop and test his probability
of causes.

At the age of 39, with a bright future ahead of him, Laplace married
18-year-cld Marie Anne Charlotte Courty de Romange. The average age of
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marriage for French women was 27, but Marie Anne came from a prosperous
and recently enncbled family with multiple ties to his financial and social
circle. A small street off the Boulevard Saint-Germain is named Courty for her
family. The Laplaces would have two children; contraception, whether coitus
interruptus or pessaries, was common, and the church itself campaigned
against multiple childbirths because they endangered the lives of mothers.
Some 16 months after the wedding a Parisian mob stormed the Bastille, and
the French Revolution began.

After the revolutionary government was attacked by foreign monarchies,
France spent a decade at war. Few scientists or engineers emigrated, even
during the Reign of Terror. Mobilized for the national defense, they orga-
nized the conscription of soldiers, collected raw materials for gunpowder,
supervised munitions factories, drew military maps, and invented a secret
weapon, reconnaissance balloons. Laplace worked throughout the upheaval
and served as the central figure in one of the Revolution’s most important
scientific projects, the metric reform to standardize weights and measures.
It was Laplace who named the meter, centimeter, and millimeter.

Nevertheless, during the 18 months of the Terror, as almost 17,000
French were executed and half & million imprisoned, his position became
increasingly precarious. Radicals attacked the elite Royal Academy of Sciences,
and publications denounced him as a modern charlatan and a “Newtonian
idolator.” A month after the Royal Academy was abolished Laplace was ar-
rested on suspicion of disloyalty to the Revolution but neighbors interceded
and he was released the next day at + a.m. A few months later he was purged
from the metric system commission as not “worthy of confidence as to [his]
republican virtues and [his] hatred of kings."® His assistant, Jean-Baptiste
Delambre, was arrested while measuring the meridian for the meter and then
released. At one point Laplace was relieved of his part-time job examining
artillery students, only to be given the same job at the Ecole Polytechnique.
Seven scientists, including several of Laplace’s closest friends and supporters,
died during the Terror. Unlike Laplace, who took no part in radical politics,
they had identified themselves with particular political factions. The most
famous was Antoine Lavoisier, guillotined because he had been a royal tax
collector. Condorcet, trying to escape from Paris, died in jail.

: The Revolution, however, transformed science from a popular hobby
1nto a full-fledged profession. Laplace emerged from the chaos as a dean of
French science, charged with building new secular educational institutions
and training the next generation of scientists. For almost 50 years—from the
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1780s until his death in 1827—France led world science as no other country
has before or since. And for 30 of those years Laplace was among the most
influential scientists of all time.

As the best-selling author of books about the celestial system and the
law of gravity, Laplace dedicated two volumes to a rising young general, Na-
poleon Bonaparte. Laplace had launched Napoleon on his military career by
giving him a passing exam grade in military school. The two never becamne
personal friends, but Napoleon appointed Laplace minister of the interior for
a short time and then appointed him to the largely honorary Senate with a
handsome salary and generous expense account that made him quite a rich
man. Mme Laplace became a lady-in-waiting to Napoleon’s sister and received
her own salary. With additional financing from Napoleon, Laplace and his
friend the chemist Claude Berthollet turned their country homes in Arceuil,
outside Paris, imto the world's only center for young postdoctoral scientists.

At a reception in Josephine Bonaparie’s rose garden at Malmaison in
1802, the emperor, who was trying to engineer a rapprochement with the
papacy, started a celebrated argument with Laplace about God, astronomy,
and the heavens,

“And who is the author of all this?" Napoleon demanded.

Laplace replied calmly that a chain of natural causes would account for
the construction and preservation of the celestial system.

Napoleon complained that “Newton spoke of God in his book. I have
perused yours but failed to find His name even once. Why?"

{ “Sire,” Laplace replied magisterially, “1 have no need of that hypothesis.”™

Laplace’s answer, so different from Price’s idea that Bayes rule could
prove the existence of God, became a symbol of a centuries-long process
that would eventually exclude religion from the scientific study of physical
phenomena. Laplace had long since separated his probability of causes from

religious considerations: “The true object of the physical sciences is not
the search for primary causes [that is, God] but the search for Jaws accord-
ing to which phenomena are produced.” Scientific explanations of natural
phenomena were triumphs of civilization whereas theological debates were
fruitless because they could never be resolved.

Laplace continued his research throughout France's political upheavals.
In 1810 he announced the central limit theorem, one of the great scientific
and statistical discoveries of all time. It asserts that, with some exceptions, any
average of a large number of similar terms will have a normal, bell-shaped
distribution. Suddenly, the easy-to-use bell curve was a real mathemati-
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cal construct. Laplace’s probability of causes had limited him to binomial
problems, but his final proof of the central limit theorem let him deal with
almost any kind of data.

In providing the mathematical justification for taking the mean of many
data points, the central limit theorem had a profound effect on the future of
Bayes’ rule. At the age of 62, Laplace, its chief creator and proponent, made
a remarkable about-face. He switched allegiances to an alternate, frequency-
based approach he had also developed. From 1811 until his death 16 years
later Laplace relied primarily on this approach, which twentieth-century
theoreticians would use to almost obliterate Bayes' rule.

Laplace made the change because he realized that where large amounts
of data were concerned, both approaches generally produce much the same
results. The probability of causes was still useful in particularly uncertain
cases because it was more powerful than frequentism. But science matured
during Laplace’s lifetime. By the 1800s mathematicians had much more reli-
able data than they had had in his youth and dealing with trustworthy data
was easier with frequentism. Mathematicians did not learn until the mid-
twentieth century that, even with great amounts of data, the two methods
can sometimes seriously disagree.

Looking back in 1813 on his 40-year quest to develop the probability of
causes, Laplace described it as the primary method for researching unknown
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or complicated causes of natural phenomena. He referred to it fondly as his
source of large numbers and the inspiration behind his development and
use of generating functions,

And finally, in the climax of one small part of his career, he proved the
elegant, general version of his theorem that we now call Bayes' rule. He had
intuited its principle as a young man in 1774, In 1781 he found a way to use
Bayes’ two-step process to derive the formula by making certain restrictive
assumptions. Berween 1810 and 181+ he finally realized what the general theo-
rem had to be. It was the formula he had been dreaming about, one broad
enough to allow him to distinguish highly probable hypotheses from less valid
ones. With it, the entire process of learning from evidence was displayed:

PEIC) P (C)

P(C|E) =
= scye.. )

b T rr.!odern terms, the equation says that P(C|E), the probability of a
[ ‘YP‘J[:.E‘SIS (given information), equals P .. (C). our initial estimate of its
_IP-'Dba ilicy. times P(E|C), the probability of each new piece of informatian
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{under the hypothesis), divided by the sum of the probabilities of the data
in all possible hypotheses.

Undergraduates today study Laplace’s first version of the equation. which
deals with discrete events such as coin tosses and births. Advanced and gradu-
ate students and researchers use calculus with his later equation to work with
observations on a continuous range between two values, for example, all the
temperatures between 32 and 33 degrees. With it, Laplace could estimate
a value as being within such and such a range with a particular degree of
probability.

Laplace had owned Bayes rule in all but name since 1781. The formula,
the method, and its masterful utilization all belong to Pierre Simon Laplace.
He made probability-based statistics commonplace. By transforming a theory
of gambling into practical mathematics, Laplace’s work dominated probability
and statistics for a century. “In my mind.” Glenn Shafer of Rutgers University
observed, “Laplace did everything, and we just read stuff back into Thomas
Bayes, Laplace put it into modern terms, [n a sense, everything is Laplacean i

If advancing the world's knowledge is important, Bayes’ rule should
be called Laplace’s rule or, in modern parlance, BPL for Bayes-Price-Laplace.
Sadly, a half century of usage forces us 1o give Bayes' name to what was really
Laplace’s achievement

Since discovering his first version of Bayes' rule in 1774, Laplace had
used it primarily to develop new mathematical techniques and had applied
it most extensively to the social sciences, that is, demography and judicial
reform. Not until i815, at the age of 66, did he apply it to his first love, as-
tronomy. He had received some astonishingly accurate tables compiled by
his assistant Alexis Bouvard, the director of the Paris Observatory. Using
Laplace’s probability of causes, Bouvard had calculated a large number of
observations about the masses of Jupiter and Saturn, estimated the possible
error for each entry, and then predicted the probable masses of the planets.
Laplace was so delighted with the tables that, despite his aversion o gambling,
he used Bayes rule to place a famous bet with his readers: odds were 11,000
o 1 that Bouvard's results for Saturn were oft by less than I%0. For jupiter,
the odds were a million to one. Space-age technology confirms that Laplace
and Bouvard should have won both bets.

Late in his career, Laplace also applied his probability of causes 10 3
variety of calculations in garth science, notably to the tides and to changes
in barometric pressure. He used a nonnumerical common-sense version of
his probability of causes to advance his famous nebular hypothesis: that the
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planets and their satellites in our solar system originated in a swirl of dust.
And he compared three hypotheses about the orbits of 100 comets to confirm
what he already knew: that the comets most probably originate within the
sun's sphere of influence.

After the fall of Napoleon, France's new king, Louis XVIII, bestowed
the hereditary title of marquis on Laplace, the son of a village innkeeper.
And on March 5, 1827, at the age of 78, Laplace died, almost exactly 100 years
after his idol, Isaac Newton.

Eulogies hailed Laplace as the Newton of France. He had brought mod-
ern science to students, governments, and the reading public and had devel-
oped probability into a formidable method for handling unknown and com-
plex causes of natural phenomena. And in one small, relatively insignificant
portion of his lifework he became the first 1o express and use what is now
calied Bayes' rule. With it, he updated old knowledge with new, explained
phenomena that previous centuries had ascribed 1o chance or to God’s will,
and opened the way for future scientific exploration.

Yet Laplace had built his probability theory on intuition. As far as he
was concerned, “essentially, the theory of probability is nothing but good
common sense reduced to mathematics. It provides an exact appreciation
of what sound minds feel with a kind of instinct, frequently without being
able to account for it."* Soon, however, scientists would begin confronting
cituations that intuition could not easily explain. Nature would prove to be
far more complicated than even Laplace had envisioned. No sooner was the
old man buried than critics began complaining about Laplace’s rule.
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