APPENDIX I ADDITIONAL Torics

=

PART | Bayes’s Theorem

A Typical Setup for Bayes’s Theorem

The Reverend Thomas Bayes (1702-1761) was an English mathematician who
discovered an important relation for conditional probabilities. This relation is
referred to as Bayes’s rule or Bayes’s theorem. It uses conditional probabilities
to adjust calculations so that we can accommodate new relevant information.
We will restrict our attention to a special case of Bayes’s theorem in which an
event B is partitioned into only #vo mutually exclusive events (see Figure Al-1),
The general formula is a bit complicated but is a straightforward extension of the
basic ideas we will present here. Most advanced texts contain such an extension,

Note: We use the following compact notation in the statement of Bayes'’s
theorem:

Notation Meaning

A* complermnent of A not A

P(B|A) probability of event 8, given event A; P(B, given A)
P(BIAT) probability of event B, given the complement of A;

P(B given not A)

We will use Figure AI-1 to motivate Bayes’s theorem. Let A and B be events in
a sample space that have probabilities not equal to 0 or 1. Let A be the comple-
ment of A,
P(BIA)P(A)
P(BIA)P(A) -+ P(BIA®)P(A)

Here is Bayes’s theorem: P(AIB) = {1)

Overview of Bayes's Theorem

Suppose we have an event 4 and we calculate P(A), the unconditional probability
of A standing by itself. Now suppose we have a “new” event B and we know the
probability of B given that A occurs P(BIA), as well as the probability of B given
that A does not occur P(BIA°). Where does such an event B come from? The event
B can be constructed in many possible ways. For example, B can be constructed as

Sample space

A

Al
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EXAMPLE 1

the result of a consulting service, a testing procedure, or a sorting activity. In the
examples and problems, you will find more ways to construct such an event B.

How can we use this “new” information concerning the event B to adjust
our calculation of the probability of event A, given B? That is, how can we
make our calculation of the probability of A more realistic by including infor-
mation about the event B? The answer is that we will use Equation (1} of
Bayes’s theorem.

Let’s look at some examples that use Equation (1) of Bayes’s theorem. We are
grateful to personal friends in the oil and natural gas business in Colorado who
provided the basic information in the following example.

BAYES’S THEOREM

A geologist has examined seismic data and other geologic formations in the vicin-
ity of a proposed site for an oil well. Based on this information, the geologist
reports a 65% chance of finding oil. The oil company decides to go ahead and
start drilling. As the drilling progresses, sample cores are taken from the well and
studied by the geologist. These sample cores have a history of predicting oil when
there is oil about 85% of the time. However, about 6% of the time the sample
cores will predict oil when there is no oil. (Note that these probabilities need not
add up to 1.) Our geologist is delighted because the sample cores predict oil for
this well.

"Use the “new” information from the sample cores to revise the geologist’s
original probability that the well will hit oil. What is the new probability?

SOLUTION: To use Bayes’s theorem, we need to identify the events A and B. Then
we need to find P(A), P(A°), P(BIA), and P{BIA®). From the description of the
problem, we have

A is the event that the well strikes oil.

A€ is the event that the well is dry (no oil).

B is the event that the core samples indicate oil.

Again, from the description, we have
P(A) = 0.65, so P(A9)=1-0.65=035

These are our prior (before new information) probabilities. New information |
comes from the sample cores. Probabilities associated with the new information j
are ;

P(BIA) = 0.85
This is the probability that core samples indicate oil when there actually is oil.
P(BIA“) = 0.06

This is the probability that core samples indicate oil when there is no oil {dry well). 3

Now we use Bayes’s theorem to revise the probability that the well will hit oil §
based on the “new” information from core samples. The revised probability is tht;r
posterior probability we compute that uses the new information from the sample
cores: 4

P{BIA)P(A) (0.85)(0.65) = 0.9634

P(AIB) = P(BIA)P(A) + P(BIA9)P(AY)  (0.85}0.65) + (0.06)(0.35)

We see that the revised (posterior) probability indicates about a 96% chance '
the well to hit oil. This is why sample cores that are good can attract money in thy
form of venture éapital (for independent drillers) on a big, expensive well. #3
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the result of a consulting service, a testing procedure, or a sorting activity. In the
examples and problems, you will find more ways to construct such an event B,

How can we use this “new” information concerning the event B to adjust
our calculation of the probability of event A, given B? That is, how can we
make our calculation of the probability of A more realistic by including infor-
mation about the event B? The answer is that we will use Equation (1) of
Bayes’s theorem. ’

Let’s look at some examples that use Equation (1) of Bayes’s theorem. We are
grateful o personal friends in the oil and natural gas business in Colorado who
provided the basic information in the following example.

EXAMPLE 1

BAYES’S THEOREM
A geologist has examined seismic data and other geologic forma.tions in the vici.n-
ity of a proposed site for an oil well. Based on this mforrpatmn, the geologist
reports a 65% chance of finding oil. The oil company decides to go ahead and
start drilling. As the drilling progresses, sample cores are taken from Fhe Wrell and
studied by the geologist. These sample cores have a history of pred-u:tmg oil when
there is oil about 85% of the time. However, about 6% of the time the sample
cores will predict oil when there is no oil. (Note that these probabilities. neec.l not
add up to 1.) Our geologist is delighted because the sample cores predict oil for
this well. . ‘
Use the “new” information from the sample cores to revise the geologists
original probability that the well will hit oil. What is the new probability?

SOLUTION: To use Bayes’s theorem, we need to identify the events A and B. Then
we need to find P(A), P(A°), P(BIA), and P{BIA®). From the description of the
problem, we have

A is the event that the well strikes oil.

A€ is the event that the well is dry (no oil).

B is the event that the core samples indicate oil.

Again, from the description, we have
P(A) = 0.65, 50 PASY=1—-0.65=0.35

These are our prior (before new information) probabilities. New informat%on
comes from the sample cores. Probabilities associated with the new information
are

P(BIA) = 0.85
This is the probability that core samples indicate oil when there actually is oil.
P(BIA®) = 0.06

This is the probability that core samples indicate oil when there is no oil (dfy \yell)‘.

Now we use Bayes’s theorem to revise the probability that the well Wl‘ll hnt oil
based on the “new” information from core samples. The revised probability is the
posterior probability we compute that uses the new information from the sample
cores:

P{BIA)P(A) _ (0.85)(0.65)
N P(BIA)P(A) + P(BIA)P(A?)  (0.85)(0.65) + (0.06}(0.35)

P(AIB) — 0.9634
We see that the revised (posterior) probability indicates about a 96% chanc‘:e for
the well to hit oil. This is why sample cores that are good can attract money in the
form of venture capital (for independent drillers} on a big, expensive well.
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R TS
GUIDED EXERCISE 1 Bayes’s theorem

The Anasazi were prehistoric pueblo people who lived in what is now the southwestern United
States. Mesa Verde, Pecos Pueblo, and Chaco Canyon are beautiful national parks and monuments,
but long ago they were home to many Anasazi. In prehistoric times, there were several Anasazi
migrations, until finally their pueblo homes were completely abandoned. The delightful book
Proceedings of the Anasazi Symposinm, 1981, published by Mesa Verde Museum Association,
contains a very interesting discussion about methods anthropologists use to (approximately) date
Anasazi objects. There are two popular ways. One is to compare environmental data to other
objects of known dates. The other is radicactive carbon dating.

Carbon dating has some variability in its accuracy, depending on how far back in time the age esti-
mate goes and also on the condition of the specimen itself. Suppose experience has shown that the
carbon method is correct 75% of the time it is used on an object from a known (given) time period.
However, there is a 10% chance that the carbon method will predict that an object is from a cer-
tain period when we know the object is not from that period.

Using environmental data, an anthropologist reported the probability to be 40% thart a fossilized
deer bone bracelet was from a certain Anasazi migration period. Then, as a follow-up study, the
carbon method also indicated that the bracelet was from this migration period. How can the anthro-
pologist adjust her estimated probability to include the “new” information from the carbon dating?

(a} To use Bayes’s theorem, we must identify the A Is the event that the bracelet is from the given
events A and B. From the description of the migration period. B is the event that carbon dating
problem, what are A and B? indicates that the bracelet is from the given

migration period.

{b) Find P{A}, P{A“), P(BIA}, and P(BIA°).

From the description,

P(A} = 0.40
P{A®) = 0.60
P{BIA) = 0.75
P{BIA®) = 0.10
(c‘) Compute P(AIB}, and explain the meaning of Using Bayes’s theorem and the results of part (b), we
this number. have
P(AIB) = P(BIA)P(A)

P(BIA)P{A) + P(BIA®)P(A")

i (0.75)(0.40)
" (0.75}{0.40) + {0.10)(0.60)

= (0.8333

The prior (before carbon dating) probability was
only 40%. However, the carbon dating enabled us
to revise this probability to 83%. Thus, we are
about 83% sure that the bracelet came from the
given migration period. Perhaps additional research
at the site will uncover more information to which
Bayes’s theorem could be applied again.

The next example is a classic application of Bayes’s theorem. Suppose we are
faced with two competing hypotheses. Each hypothesis claims to explain the
same phenomenon; however, only one hypothesis can be correct. Which hypoth-
esis should we accept? This situation occurs in the natural sciences, the social sci-
ences, medicine, finance, and many other areas of life. Bayes’s theorem will help
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us compute the probabilities that one or the other hypothesis is correct. Then
what do we do? Well, the great mathematician and philosopher René Descartes
can guide us. Descartes once said, “When it is not in our power to determine
what is true, we ought to follow what is most probable.” Just knowing probabil-
ities does not allow us with absolute certainty to choose the correct hypothesis,
but it does permit us to identify which hypothesis is #ost likely to be correct.

4" EXAMPLE 2

COMPETING HYPOTHESES

A-large hospital uses two medical labs for blood work, biopsies, throat cultures,
and other medical tests. Lab I does 60% of the reports. The other 40% of the
reports are done by Lab II. Based on long experience, it is known that about 10%
of the reports from Lab I contain errors and about 7% of the reports from Lab II
contain errors. The hospital recently received a lab report that, through additional
medical work, was revealed to be incorrect. One hypothesis is that the report with
the mistake came from Lab I. The competing hypothesis is that the report with the
mistake came from Lab II. Which lab do you suspect is the culprit? Why?

SOLUTION: Let’s use the following notation.

A = event report is from Lab ]
A€ = event report is from Lab II
B = event report contains a mistake

From the information given,

P(A) = 0.60  P(A9) = 0.40
P(BIA) = 0.10  P(BIA) = 0.07
The probability that the report is from Lab I giver we have a mistake is P(A|B).
Using Bayes’s theorem, we get
P{BIA) P(A)
P(B|A) P(A) + P(BIA®) P{A°)
_ (0.10}0.60)
"~ (0.10){0.60) + (0.07)(0.40}
0.06

= 0.088 (.682 = 68%

So, the probability is about 68% that Lab I supplied the report with the error. It
follows that the probability is about 100% — 68% = 32% that the erroneous
report came from Lab II. | ,f{"

P{AIB) =

PROBLEM

BAYES‘ ' TI—IEOREM APPLIED TO QUALITY CONTROL

¥ ..makes steel bolts knows from long expenence that about
._ s-bolts are defective. If the company simply.ships.all bolts that it
: produces, then 12% of the shipment the customer receives will be defectlve

- To decrease the percentage of defective bolts shipped to customers, an - -

" eléctronic scanner is installed. The scanner i§ positioned over the production -
* line and is. supposed to plck out the good bolts. However, the scanner itself

i ‘_;_To test l:he scanner a large number of pretested) good”

"Con'tinuéd '
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us compute the probabilities that one or the other hypothesis is correct. Then
what do we do? Well, the great mathematician and philosopher René Descartes
can guide us. Descartes once said, “When it is not in our power to determine
what is true, we ought to follow what is most probable.” Just knowing probabil-
ities does not allow us with absolute certainty to choose the correct hypothesis,
but it does permit us to identify which hypothesis is most likely to be correct.

-

EXAMPLE 2

COMPETING HYPQOTHESES

A large hospital uses two medical labs for blood work, biopsies, throat cultures,
and other medical tests. Lab I does 60% of the reports. The other 40% of the
reports are done by Lab IL. Based on long experience, it is known that about 10%
of the reports from Lab I contain errors and about 7% of the reports from .L_ab 11
contain errors. The hospital recently received a lab report that, through additional
medical work, was revealed to be incorrect. One hypothesis is that the report with
the mistake came from Lab L. The competing hypothesis is that the report with the
mistake came from Lab II. Which lab do you suspect is the culprit? Why?

SOLUTION: Let’s use the following notation.

A = event report is from Lab I
A° = event report is from Lab II

B = event report contains a mistake
From the information given,

P{A} = 0.60  P(A%) = 0.40

P(BIA) = 0.10  P{BIA%) = 0.07

The probability that the report is from Lab I given we have a mistake is P(A[B).
Using Bayes’s theorem, we get

P(BIA) P(A)
PIAIB) = & 514} P(4) + PIBIAY) P(A7)
(0.10)(0.60)
~ {0.10)(0.60) + (0.07)(0.40)
0.06

= — ~ (.682 ~ 68%
0.088 068 °

So, the probability is about 68% that Lab I supplied the report with the error. It
follows that the probability is about 100% — 68% = 32% that the erroneous

report came from Lab IL. fL -

PROBLEM

BAYES’S THEOREM APPLIED TO QUALITY CONTROL

- A company that makes steel bolts knows from long experience th_at abou.t
12% of its bolts are defective. If the company simply ships all bolts that it
produces, then 12% of the shipment the customer receives will be defective. -
To decrease the percentage of defective bolts shipped to customers,an
electronic scanner is installed. The scanner is positioned over the prodgctlon
line and-is supposed to pick out the good bolts. Flowever, the scanner f’tself
is nat perfect. To test the scanner, a large number of (pretested) “good
bolts were run under the scanner, and it accepted 90% of the bolts as good.
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Then a large number of (pretested) defective bolts were run under the scan-
ner, and it accepted 3% of these as good bolts.

EARRISAAEAE

{a) If the company does not usé the scanner, what percentage of a shipment
is expected to be good? What percentage is expected to be defective?

(b) The scanner itself makes mistakes, and the company is questioning the
value of using it. Suppose the company does use the scanner and ships
only what the scanner passes as “good” bolts. In this case, what

percentage of the shipment is expected to be good? What percentage is
expected to be defective?

‘l"artial Answer

To solve this problem, we use Bayes’s theorem. The result of using the scanner
is 2 dramatic improvement in the quality of the shipped product, If the scan-
ner is not used, only 88% of the shipped bolts will be good. However, if the
scanner is used and only the bolis it passes as good are shipped, then 99.6%
of the shipment is expected to be good. Even though the scanner itself makes
a considerable number. of mistakes, it is definitely worth using. Not only does

it increase the quality of a shipment, the bolts it rejects can be recycled into
new bolts.

In Chapter 5, we examined the binomial distribution. The binomial probability
distribution assumes independent trials. If the trials are constructed by drawing
samples from a population, then we have two possibilities: We sample either with
replacement or without replacement. If we draw random samples with replace-
ment, the trials can be taken to be independent. If we draw random samples with-
out replacement and the population is very large, then it is reasonable to say that
the trials are approximately independent. In this case, we go ahead and use the
binomial distribution. However, if the population is relatively small and we draw
samples without replacement, the assumption of independent trials is not valid,
and we should not use the binomial distribution.

The hypergeometric distribution is a probability distribution of a random
variable that has two outcomes when sampling is done without replacement.

Consider the following notational setup (see Figure AI-2). Suppose we have a
population with only #wo distinct types of objects. Such a population might be

Population size = g+ b

a = number of successes in population

Success

Sample of size n




